DAM: Dissimilarity Attention Module for Weakly-supervised Video Anomaly Detection

Snehashis Majhi, Srijan Das, F. Brémond
{"title":"DAM: Dissimilarity Attention Module for Weakly-supervised Video Anomaly Detection","authors":"Snehashis Majhi, Srijan Das, F. Brémond","doi":"10.1109/AVSS52988.2021.9663810","DOIUrl":null,"url":null,"abstract":"Video anomaly detection under weak supervision is complicated due to the difficulties in identifying the anomaly and normal instances during training, hence, resulting in non-optimal margin of separation. In this paper, we propose a framework consisting of Dissimilarity Attention Module (DAM) to discriminate the anomaly instances from normal ones both at feature level and score level. In order to decide instances to be normal or anomaly, DAM takes local spatio-temporal (i.e. clips within a video) dissimilarities into account rather than the global temporal context of a video. This allows the framework to detect anomalies in real-time (i.e. online) scenarios without the need of extra window buffer time. Further more, we adopt two-variants of DAM for learning the dissimilarities between successive video clips. The proposed framework along with DAM is validated on two large scale anomaly detection datasets i.e. UCF-Crime and ShanghaiTech, outperforming the online state-of-the-art approaches by 1.5% and 3.4% respectively. The source code and models will be available at https://github.com/snehashismajhi/DAM-Anomaly-Detection","PeriodicalId":246327,"journal":{"name":"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS52988.2021.9663810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Video anomaly detection under weak supervision is complicated due to the difficulties in identifying the anomaly and normal instances during training, hence, resulting in non-optimal margin of separation. In this paper, we propose a framework consisting of Dissimilarity Attention Module (DAM) to discriminate the anomaly instances from normal ones both at feature level and score level. In order to decide instances to be normal or anomaly, DAM takes local spatio-temporal (i.e. clips within a video) dissimilarities into account rather than the global temporal context of a video. This allows the framework to detect anomalies in real-time (i.e. online) scenarios without the need of extra window buffer time. Further more, we adopt two-variants of DAM for learning the dissimilarities between successive video clips. The proposed framework along with DAM is validated on two large scale anomaly detection datasets i.e. UCF-Crime and ShanghaiTech, outperforming the online state-of-the-art approaches by 1.5% and 3.4% respectively. The source code and models will be available at https://github.com/snehashismajhi/DAM-Anomaly-Detection
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弱监督视频异常检测的不相似注意模块
弱监督下的视频异常检测非常复杂,因为在训练过程中很难识别异常和正常实例,从而导致分离余量不理想。在本文中,我们提出了一个由不相似注意模块(DAM)组成的框架,用于在特征水平和分数水平上区分异常实例和正常实例。为了确定实例是正常的还是异常的,DAM考虑了局部时空(即视频中的片段)的差异,而不是视频的全局时间背景。这允许框架在不需要额外的窗口缓冲时间的情况下实时(即在线)检测异常。此外,我们采用DAM的两种变体来学习连续视频片段之间的差异。在两个大型异常检测数据集(UCF-Crime和ShanghaiTech)上验证了所提出的框架和DAM,分别比在线最先进的方法高出1.5%和3.4%。源代码和模型可以在https://github.com/snehashismajhi/DAM-Anomaly-Detection上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometry-Based Person Re-Identification in Fisheye Stereo On the Performance of Crowd-Specific Detectors in Multi-Pedestrian Tracking ARPD: Anchor-free Rotation-aware People Detection using Topview Fisheye Camera A Fire Detection Model Based on Tiny-YOLOv3 with Hyperparameters Improvement A Splittable DNN-Based Object Detector for Edge-Cloud Collaborative Real-Time Video Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1