Distributed high-dimensional index creation using Hadoop, HDFS and C++

G. Gudmundsson, L. Amsaleg, B. Jónsson
{"title":"Distributed high-dimensional index creation using Hadoop, HDFS and C++","authors":"G. Gudmundsson, L. Amsaleg, B. Jónsson","doi":"10.1109/CBMI.2012.6269848","DOIUrl":null,"url":null,"abstract":"This paper describes an initial study where the open-source Hadoop parallel and distributed run-time environment is used to speedup the construction phase of a large high-dimensional index. This paper first discusses the typical practical problems developers may run into when porting their code to Hadoop. It then presents early experimental results showing that the performance gains are substantial when indexing large data sets.","PeriodicalId":120769,"journal":{"name":"2012 10th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 10th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2012.6269848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper describes an initial study where the open-source Hadoop parallel and distributed run-time environment is used to speedup the construction phase of a large high-dimensional index. This paper first discusses the typical practical problems developers may run into when porting their code to Hadoop. It then presents early experimental results showing that the performance gains are substantial when indexing large data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用Hadoop, HDFS和c++创建分布式高维索引
本文介绍了一种利用开源Hadoop并行分布式运行环境加速大型高维索引构建阶段的初步研究。本文首先讨论开发人员在将代码移植到Hadoop时可能遇到的典型实际问题。然后给出了早期的实验结果,表明在索引大型数据集时,性能获得了实质性的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Water flow detection from a wearable device with a new feature, the spectral cover Comparing segmentation strategies for efficient video passage retrieval Audio and video cues for geo-tagging online videos in the absence of metadata Data pre-processing to improve SVM video classification Analyzing the behavior of professional video searchers using RAI query logs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1