{"title":"Using clustering ensemble to identify banking business models","authors":"Bernardo P. Marques, Carlos F. Alves","doi":"10.1002/isaf.1471","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The business models of banks are often seen as the result of a variety of simultaneously determined managerial choices, such as those regarding the types of activities, funding sources, level of diversification, and size. Moreover, owing to the fuzziness of data and the possibility that some banks may combine features of different business models, the use of hard clustering methods has often led to poorly identified business models. In this paper we propose a framework to deal with these challenges based on an ensemble of three unsupervised clustering methods to identify banking business models: fuzzy c-means (which allows us to handle fuzzy clustering), self-organizing maps (which yield intuitive visual representations of the clusters), and partitioning around medoids (which circumvents the presence of data outliers). We set up our analysis in the context of the European banking sector, which has seen its regulators increasingly focused on examining the business models of supervised entities in the aftermath of the twin financial crises. In our empirical application, we find evidence of four distinct banking business models and further distinguish between banks with a clearly defined business model (core banks) and others (non-core banks), as well as banks with a stable business model over time (persistent banks) and others (non-persistent banks). Our proposed framework performs well under several robustness checks related with the sample, clustering methods, and variables used.</p>\n </div>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"27 2","pages":"66-94"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/isaf.1471","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 4
Abstract
The business models of banks are often seen as the result of a variety of simultaneously determined managerial choices, such as those regarding the types of activities, funding sources, level of diversification, and size. Moreover, owing to the fuzziness of data and the possibility that some banks may combine features of different business models, the use of hard clustering methods has often led to poorly identified business models. In this paper we propose a framework to deal with these challenges based on an ensemble of three unsupervised clustering methods to identify banking business models: fuzzy c-means (which allows us to handle fuzzy clustering), self-organizing maps (which yield intuitive visual representations of the clusters), and partitioning around medoids (which circumvents the presence of data outliers). We set up our analysis in the context of the European banking sector, which has seen its regulators increasingly focused on examining the business models of supervised entities in the aftermath of the twin financial crises. In our empirical application, we find evidence of four distinct banking business models and further distinguish between banks with a clearly defined business model (core banks) and others (non-core banks), as well as banks with a stable business model over time (persistent banks) and others (non-persistent banks). Our proposed framework performs well under several robustness checks related with the sample, clustering methods, and variables used.
期刊介绍:
Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.