Enabling Energy-Efficient IoT via Learning Assisted Header-Free Communication

Dylan Wheeler, B. Natarajan
{"title":"Enabling Energy-Efficient IoT via Learning Assisted Header-Free Communication","authors":"Dylan Wheeler, B. Natarajan","doi":"10.1109/WF-IoT51360.2021.9595651","DOIUrl":null,"url":null,"abstract":"With millions of connected devices expected to proliferate across multiple application domains, energy efficiency is a critical factor in IoT solutions. This paper aims to enhance the energy efficiency of networked IoT sensors by transitioning to a header-free communication framework. Novel enhancements to the reception technique based on the stochastic expectation maximization algorithm are proposed. Specifically, in contrast to prior efforts, a combination of compressive sensing principles along with deep learning methodologies are used to improve the performance of header-free sensor communications. Using simulation results, performance & complexity gains relative to the classic approach of up to 95% and 99%, respectively, are achieved.","PeriodicalId":184138,"journal":{"name":"2021 IEEE 7th World Forum on Internet of Things (WF-IoT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 7th World Forum on Internet of Things (WF-IoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WF-IoT51360.2021.9595651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With millions of connected devices expected to proliferate across multiple application domains, energy efficiency is a critical factor in IoT solutions. This paper aims to enhance the energy efficiency of networked IoT sensors by transitioning to a header-free communication framework. Novel enhancements to the reception technique based on the stochastic expectation maximization algorithm are proposed. Specifically, in contrast to prior efforts, a combination of compressive sensing principles along with deep learning methodologies are used to improve the performance of header-free sensor communications. Using simulation results, performance & complexity gains relative to the classic approach of up to 95% and 99%, respectively, are achieved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过学习辅助的无标头通信实现节能物联网
随着数以百万计的连接设备在多个应用领域的激增,能源效率是物联网解决方案的关键因素。本文旨在通过过渡到无报头通信框架来提高联网物联网传感器的能源效率。提出了基于随机期望最大化算法的接收技术改进方案。具体来说,与之前的努力相比,压缩感知原理与深度学习方法的结合用于提高无报头传感器通信的性能。使用仿真结果,相对于经典方法,性能和复杂性分别提高了95%和99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Virtualized LoRa Testbed and Experimental Results for Resource Pooling Towards a Novel Edge to Cloud IoMT Application for Wildlife Monitoring using Edge Computing LoRa-STAR: Optimizing Energy Consumption in LoRa Nodes for Precision Farming Prioritized computation offloading and resource optimization for networks with strict latency DTLS Connection Identifiers for Secure Session Resumption in Constrained IoT Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1