Design and optimization methods for digital microfluidic biochips: A vision for functional diversity and more than moore

K. Chakrabarty
{"title":"Design and optimization methods for digital microfluidic biochips: A vision for functional diversity and more than moore","authors":"K. Chakrabarty","doi":"10.1109/SOCC.2011.6085141","DOIUrl":null,"url":null,"abstract":"Microfluidics-based biochips (or lab-on-chip) are revolutionizing laboratory procedures in molecular biology, and leading to a convergence of information technology with biochemistry and nanoelectronics. Advances in microfluidics technology offer exciting possibilities for high-throughput DNA sequencing, protein crystallization, drug discovery, immunoassays, neo-natal and point-of-care clinical diagnostics, etc. As microfluidic lab-on-chip mature into multifunctional devices with “smart” reconfiguration and adaptation capabilities, automated design and ease of use become extremely important. Computer-aided design (CAD) tools are needed to allow designers and users to harness the new technology that is rapidly emerging for integrated biofluidics. This talk will present ongoing work at Duke University on design automation techniques for microfluidic biochips. First, the speaker will provide an overview of electrowetting-based digital microfluidic biochips. Next, the speaker will describe synthesis tools that can map bioassay protocols to a reconfigurable microfluidic device and generate control software, an optimized schedule of bioassay operations, the binding of assay operations to functional units, and the layout and droplet flow-paths for the biochip. Techniques for pin-constrained chip design, fault detection, and dynamic reconfiguration will also be presented. An automated design flow allows the biochip user to concentrate on the development of nano- and micro-scale bioassays, leaving implementation details to CAD tools.","PeriodicalId":365422,"journal":{"name":"2011 IEEE International SOC Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International SOC Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC.2011.6085141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Microfluidics-based biochips (or lab-on-chip) are revolutionizing laboratory procedures in molecular biology, and leading to a convergence of information technology with biochemistry and nanoelectronics. Advances in microfluidics technology offer exciting possibilities for high-throughput DNA sequencing, protein crystallization, drug discovery, immunoassays, neo-natal and point-of-care clinical diagnostics, etc. As microfluidic lab-on-chip mature into multifunctional devices with “smart” reconfiguration and adaptation capabilities, automated design and ease of use become extremely important. Computer-aided design (CAD) tools are needed to allow designers and users to harness the new technology that is rapidly emerging for integrated biofluidics. This talk will present ongoing work at Duke University on design automation techniques for microfluidic biochips. First, the speaker will provide an overview of electrowetting-based digital microfluidic biochips. Next, the speaker will describe synthesis tools that can map bioassay protocols to a reconfigurable microfluidic device and generate control software, an optimized schedule of bioassay operations, the binding of assay operations to functional units, and the layout and droplet flow-paths for the biochip. Techniques for pin-constrained chip design, fault detection, and dynamic reconfiguration will also be presented. An automated design flow allows the biochip user to concentrate on the development of nano- and micro-scale bioassays, leaving implementation details to CAD tools.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数字微流控生物芯片的设计和优化方法:功能多样性和超越摩尔的愿景
基于微流体的生物芯片(或芯片实验室)正在彻底改变分子生物学的实验室程序,并导致信息技术与生物化学和纳米电子学的融合。微流体技术的进步为高通量DNA测序、蛋白质结晶、药物发现、免疫分析、新生儿和即时临床诊断等提供了令人兴奋的可能性。随着微流控芯片实验室向具有“智能”重构和适应能力的多功能设备的成熟,自动化设计和易用性变得极其重要。需要计算机辅助设计(CAD)工具,使设计人员和用户能够利用快速涌现的集成生物流体新技术。本讲座将介绍杜克大学在微流控生物芯片设计自动化技术方面正在进行的工作。首先,演讲者将提供基于电润湿的数字微流控生物芯片的概述。接下来,演讲者将介绍合成工具,这些工具可以将生物测定方案映射到可重构的微流控设备并生成控制软件,优化的生物测定操作时间表,将测定操作与功能单元结合,以及生物芯片的布局和液滴流动路径。引脚约束芯片设计、故障检测和动态重构技术也将被介绍。自动化设计流程允许生物芯片用户专注于纳米和微尺度生物测定的开发,将实施细节留给CAD工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keynote speaker An analytical model to estimate PCM failure probability due to process variations A high-performance low VMIN 55nm 512Kb disturb-free 8T SRAM with adaptive VVSS control “Manufacturing test of systems-on-a-chip (SoCs)” A silicon core for an acoustic archival tag
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1