A neural architecture applied to the enhancement of noisy binary images without prior knowledge

F. Shih, J. Moh, Henry Bourne
{"title":"A neural architecture applied to the enhancement of noisy binary images without prior knowledge","authors":"F. Shih, J. Moh, Henry Bourne","doi":"10.1109/TAI.1990.130423","DOIUrl":null,"url":null,"abstract":"The authors present the formulation of an improved neural architecture, a modified adaptive resonance theory (ART), for the enhancement of binary images in the presence of noise. The two-layer ART model developed by G.A. Carpenter and S. Grossberg (1987) is further incorporated into a four-layer network. The operation and performance of ART1 in classifying binary input patterns is first investigated. Based on ART1, a noise filtering architecture is devised whereby preestablished recognition categories are used as region or contour detection exemplars in order to fill in the gaps and smooth the contours of a noisy binary image without any prior knowledge of the image itself.<<ETX>>","PeriodicalId":366276,"journal":{"name":"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1990.130423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The authors present the formulation of an improved neural architecture, a modified adaptive resonance theory (ART), for the enhancement of binary images in the presence of noise. The two-layer ART model developed by G.A. Carpenter and S. Grossberg (1987) is further incorporated into a four-layer network. The operation and performance of ART1 in classifying binary input patterns is first investigated. Based on ART1, a noise filtering architecture is devised whereby preestablished recognition categories are used as region or contour detection exemplars in order to fill in the gaps and smooth the contours of a noisy binary image without any prior knowledge of the image itself.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种应用于无先验知识的噪声二值图像增强的神经结构
作者提出了一种改进的神经结构,一种改进的自适应共振理论(ART),用于增强存在噪声的二值图像。由G.A. Carpenter和S. Grossberg(1987)提出的两层ART模型被进一步纳入到四层网络中。首先研究了ART1在二进制输入模式分类中的操作和性能。基于ART1,设计了一种噪声滤波架构,其中使用预先建立的识别类别作为区域或轮廓检测示例,以填补空白并平滑噪声二值图像的轮廓,而无需对图像本身有任何先验知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning steppingstones for problem solving Conventional and associative memory-based spelling checkers Relationships in an object knowledge representation model A tool for building decision-support-oriented expert systems Generation of feature detectors for texture discrimination by genetic search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1