Study on the Influence of Geometric Shape of Material on the Reposed Angle Based on EDEM

Xu Lin, Yanhui Chen
{"title":"Study on the Influence of Geometric Shape of Material on the Reposed Angle Based on EDEM","authors":"Xu Lin, Yanhui Chen","doi":"10.11648/J.IJMEA.20180604.14","DOIUrl":null,"url":null,"abstract":"When studying the discreteness of granular materials, the size of the angle of repose can be used as an important parameter to study the stability of granular materials. In recent years, many scholars have studied the morphology of particles, but they are basically based on the regular shape of spheres and ellipsoids, which are very different from the actual particle shape, which leads to the measurement results not consistent with the actual results. Therefore, based on the above reasons, this paper mainly studied the influence of geometric shape for the Reposed Angle, the simulation experiment is carried for the Reposed Angle using the discrete element software EDEM, the Reposed Angle is measured for five different shape using slice cutting analysis method, and the experimental measurement has carried on for the Reposed Angle for each shape, SPC method is used to determine the reliability of the data. The results show that the size of the Reposed Angle increases gradually in the order of sheet, intermediate, horn, strip and equal square among the five studied shape, the mechanism is that the greater the number of internal contact is, can truly reflect the interaction and occlusal relationship, the more easily locked the particles are in the force chain, the more difficult to separate the particles are, the more stable the accumulation characteristics are.","PeriodicalId":398842,"journal":{"name":"International Journal of Mechanical Engineering and Applications","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJMEA.20180604.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When studying the discreteness of granular materials, the size of the angle of repose can be used as an important parameter to study the stability of granular materials. In recent years, many scholars have studied the morphology of particles, but they are basically based on the regular shape of spheres and ellipsoids, which are very different from the actual particle shape, which leads to the measurement results not consistent with the actual results. Therefore, based on the above reasons, this paper mainly studied the influence of geometric shape for the Reposed Angle, the simulation experiment is carried for the Reposed Angle using the discrete element software EDEM, the Reposed Angle is measured for five different shape using slice cutting analysis method, and the experimental measurement has carried on for the Reposed Angle for each shape, SPC method is used to determine the reliability of the data. The results show that the size of the Reposed Angle increases gradually in the order of sheet, intermediate, horn, strip and equal square among the five studied shape, the mechanism is that the greater the number of internal contact is, can truly reflect the interaction and occlusal relationship, the more easily locked the particles are in the force chain, the more difficult to separate the particles are, the more stable the accumulation characteristics are.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于EDEM的材料几何形状对休止角影响研究
在研究颗粒物料的离散性时,休止角的大小可以作为研究颗粒物料稳定性的重要参数。近年来,许多学者对颗粒的形貌进行了研究,但基本都是基于球体和椭球体的规则形状,与实际颗粒形状相差很大,导致测量结果与实际结果不一致。因此,基于以上原因,本文主要研究几何形状对休止角的影响,利用离散元软件EDEM对休止角进行了仿真实验,利用切片切割分析法对5种不同形状的休止角进行了测量,并对每种形状的休止角进行了实验测量,采用SPC法确定数据的可靠性。结果表明:在所研究的5种形状中,休止角的大小依次为片状、中间、角状、条状、等方形,其大小逐渐增大,其机理是内部接触次数越多,越能真实地反映相互作用和咬合关系,颗粒越容易被锁在力链中,颗粒越难以分离,堆积特性越稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Outstanding Excellences of Interactive Energy Density Topology Change Method Research on the Improvement of Weldability in Resistance Spot Welding of 6-Series Aluminum Alloys Techno-Economic Analysis of the Usage of Solar Photovoltaic (SPV) System Compared to Premium Motor Spirit (PMS) for Power Generation in Nigeria Processing and Characterization of Maraging Steel Using LPBF Additive Manufacturing Technology The Effect of Bumper Dimensions and Car Speed on Neck and Lower Back Forces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1