Weaving Twitter stream into Linked Data a proof of concept framework

Farhan Sahito, A. Latif, W. Slany
{"title":"Weaving Twitter stream into Linked Data a proof of concept framework","authors":"Farhan Sahito, A. Latif, W. Slany","doi":"10.1109/ICET.2011.6048497","DOIUrl":null,"url":null,"abstract":"Twitter is one of the most popular and well known micro blogging platforms. Its usage in all walks of life as a short message service makes it a highly valuable and trendy asset of today's web. But the knowledge and content delivered by Twitter explicitly or implicitly as short messages remains mostly unstructured and hidden for machine usage. In this paper, we have addressed the aforementioned problems by using the Semantic Web and Linked Data technologies. We explore an integrated approach by building a proof of concept framework, which uses Semantic Web technologies to triplify and link the unstructured content of tweets with Linked Data clouds as structured data. We are of the view that this proof of concept framework will be helpful in investigation of case studies like opinion mining, trend analysis in various settings and more importantly will bring the Social Web closer to the Semantic Web. In future we will extend our proposed framework in the domain of terrorism informatics.","PeriodicalId":167049,"journal":{"name":"2011 7th International Conference on Emerging Technologies","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 7th International Conference on Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICET.2011.6048497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Twitter is one of the most popular and well known micro blogging platforms. Its usage in all walks of life as a short message service makes it a highly valuable and trendy asset of today's web. But the knowledge and content delivered by Twitter explicitly or implicitly as short messages remains mostly unstructured and hidden for machine usage. In this paper, we have addressed the aforementioned problems by using the Semantic Web and Linked Data technologies. We explore an integrated approach by building a proof of concept framework, which uses Semantic Web technologies to triplify and link the unstructured content of tweets with Linked Data clouds as structured data. We are of the view that this proof of concept framework will be helpful in investigation of case studies like opinion mining, trend analysis in various settings and more importantly will bring the Social Web closer to the Semantic Web. In future we will extend our proposed framework in the domain of terrorism informatics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将Twitter流编织到关联数据中是一个概念验证框架
Twitter是最受欢迎、最知名的微博平台之一。作为一种短消息服务,它在各行各业的使用使其成为当今网络中非常有价值和时尚的资产。但Twitter以短消息的形式或明或暗地传递的知识和内容,大部分仍然是非结构化的,并为机器使用隐藏起来。在本文中,我们通过使用语义网和关联数据技术解决了上述问题。我们通过构建概念验证框架探索了一种集成方法,该框架使用语义Web技术将tweet的非结构化内容与关联数据云作为结构化数据进行三倍和链接。我们认为,这个概念验证框架将有助于调查案例研究,如意见挖掘、各种情况下的趋势分析,更重要的是,它将使社交网更接近语义网。在未来,我们将在恐怖主义信息学领域扩展我们提出的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Next generation multi-service access gateway for Radio over Fiber wireless systems Transmission of RF signals through energy efficient window using FSS A virtual telehealth framework: Applications and technical considerations Embedding data in edge boundaries with high PSNR Classification of usability issues for haptic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1