Cutty

Paris Carbone, Jonas Traub, Asterios Katsifodimos, Seif Haridi, Volker Markl
{"title":"Cutty","authors":"Paris Carbone, Jonas Traub, Asterios Katsifodimos, Seif Haridi, Volker Markl","doi":"10.1145/2983323.2983807","DOIUrl":null,"url":null,"abstract":"Aggregation queries on data streams are evaluated over evolving and often overlapping logical views called windows. While the aggregation of periodic windows were extensively studied in the past through the use of aggregate sharing techniques such as Panes and Pairs, little to no work has been put in optimizing the aggregation of very common, non-periodic windows. Typical examples of non-periodic windows are punctuations and sessions which can implement complex business logic and are often expressed as user-defined operators on platforms such as Google Dataflow or Apache Storm. The aggregation of such non-periodic or user-defined windows either falls back to expensive, best-effort aggregate sharing methods, or is not optimized at all. In this paper we present a technique to perform efficient aggregate sharing for data stream windows, which are declared as user-defined functions (UDFs) and can contain arbitrary business logic. To this end, we first introduce the concept of User-Defined Windows (UDWs), a simple, UDF-based programming abstraction that allows users to programmatically define custom windows. We then define semantics for UDWs, based on which we design Cutty, a low-cost aggregate sharing technique. Cutty improves and outperforms the state of the art for aggregate sharing on single and multiple queries. Moreover, it enables aggregate sharing for a broad class of non-periodic UDWs. We implemented our techniques on Apache Flink, an open source stream processing system, and performed experiments demonstrating orders of magnitude of reduction in aggregation costs compared to the state of the art.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"75 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

Abstract

Aggregation queries on data streams are evaluated over evolving and often overlapping logical views called windows. While the aggregation of periodic windows were extensively studied in the past through the use of aggregate sharing techniques such as Panes and Pairs, little to no work has been put in optimizing the aggregation of very common, non-periodic windows. Typical examples of non-periodic windows are punctuations and sessions which can implement complex business logic and are often expressed as user-defined operators on platforms such as Google Dataflow or Apache Storm. The aggregation of such non-periodic or user-defined windows either falls back to expensive, best-effort aggregate sharing methods, or is not optimized at all. In this paper we present a technique to perform efficient aggregate sharing for data stream windows, which are declared as user-defined functions (UDFs) and can contain arbitrary business logic. To this end, we first introduce the concept of User-Defined Windows (UDWs), a simple, UDF-based programming abstraction that allows users to programmatically define custom windows. We then define semantics for UDWs, based on which we design Cutty, a low-cost aggregate sharing technique. Cutty improves and outperforms the state of the art for aggregate sharing on single and multiple queries. Moreover, it enables aggregate sharing for a broad class of non-periodic UDWs. We implemented our techniques on Apache Flink, an open source stream processing system, and performed experiments demonstrating orders of magnitude of reduction in aggregation costs compared to the state of the art.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
极短的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Querying Minimal Steiner Maximum-Connected Subgraphs in Large Graphs aNMM: Ranking Short Answer Texts with Attention-Based Neural Matching Model Approximate Discovery of Functional Dependencies for Large Datasets Mining Shopping Patterns for Divergent Urban Regions by Incorporating Mobility Data A Personal Perspective and Retrospective on Web Search Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1