Intelligent Algorithms for the Auto-configuration of Ad Hoc Wireless Networks based on Quality of Service Parameters

S. Simbaña, Diego Vallejo-Huanga
{"title":"Intelligent Algorithms for the Auto-configuration of Ad Hoc Wireless Networks based on Quality of Service Parameters","authors":"S. Simbaña, Diego Vallejo-Huanga","doi":"10.1109/ICECCME52200.2021.9590984","DOIUrl":null,"url":null,"abstract":"Ad Hoc networks do not depend on infrastructure, this makes each node participating in the routes by forwarding information to the different neighboring nodes and grants autonomy and flexibility to the network. The instability of the wireless network is a problem that affects the Quality of Service (QoS) parameters due to the mobility of the nodes. This article uses an unsupervised learning algorithm and a reinforcement learning algorithm, for the self-configuration of an ad hoc network based on QoS parameters, with a hierarchical network topology that allows its segmentation into clusters, reducing the routing tables. The results show that the use of artificial intelligence algorithms allows the network to remain stable and to improve the conditions around the network management strategy, modifying in realtime the waiting time of the active route and the hello-interval in the AODV protocol. The experiments with the two intelligent algorithms allow analyzing the QoS parameters in each node of the ad hoc wireless network, using the end-to-end delay data of each node, and a dataset of the traffic sent from the entire topology for searching the nodes that require auto-configuration.","PeriodicalId":102785,"journal":{"name":"2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCME52200.2021.9590984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ad Hoc networks do not depend on infrastructure, this makes each node participating in the routes by forwarding information to the different neighboring nodes and grants autonomy and flexibility to the network. The instability of the wireless network is a problem that affects the Quality of Service (QoS) parameters due to the mobility of the nodes. This article uses an unsupervised learning algorithm and a reinforcement learning algorithm, for the self-configuration of an ad hoc network based on QoS parameters, with a hierarchical network topology that allows its segmentation into clusters, reducing the routing tables. The results show that the use of artificial intelligence algorithms allows the network to remain stable and to improve the conditions around the network management strategy, modifying in realtime the waiting time of the active route and the hello-interval in the AODV protocol. The experiments with the two intelligent algorithms allow analyzing the QoS parameters in each node of the ad hoc wireless network, using the end-to-end delay data of each node, and a dataset of the traffic sent from the entire topology for searching the nodes that require auto-configuration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于服务质量参数的Ad Hoc无线网络自动配置智能算法
Ad Hoc网络不依赖于基础设施,这使得每个节点通过向不同的相邻节点转发信息来参与路由,并赋予网络自主性和灵活性。无线网络的不稳定性是由于节点的移动性而影响服务质量(QoS)参数的问题。本文使用无监督学习算法和强化学习算法,对基于QoS参数的自配置ad hoc网络进行自配置,并使用分层网络拓扑,允许将其分割成簇,从而减少路由表。结果表明,人工智能算法的使用可以使网络保持稳定,并改善网络管理策略周围的条件,实时修改AODV协议中活动路由的等待时间和hello-interval。两种智能算法的实验允许分析自组织无线网络中每个节点的QoS参数,使用每个节点的端到端延迟数据和从整个拓扑发送的流量数据集来搜索需要自动配置的节点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of Neuronal Firing Patterns in Zebrafish Embryos Using PCA Improved Analytical Calculation for 2D Current Displacement in Rectangular Conductors Motor Imagery Based Fuzzy Logic Controlled Intelligent Wheelchair Modelling and Simulation of Single Ended Fault Location Algorithm for the Distributed Transmission Lines Simplified Dynamic PV Generator Model for Analysis of Voltage and Current Variation in Feeder with High DG Integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1