An Effective Feature-Weighting Model for Question Classification

Peng Huang, Jiajun Bu, Chun Chen, Guang Qiu
{"title":"An Effective Feature-Weighting Model for Question Classification","authors":"Peng Huang, Jiajun Bu, Chun Chen, Guang Qiu","doi":"10.1109/CIS.2007.12","DOIUrl":null,"url":null,"abstract":"Question classification is one of the most important sub- tasks in Question Answering systems. Now question tax- onomy is getting larger and more fine-grained for better answer generation. Many approaches to question classifi- cation have been proposed and achieve reasonable results. However, all previous approaches use certain learning al- gorithm to learn a classifier from binary feature vectors, extracted from small size of labeled examples. In this pa- per we propose a feature-weighting model which assigns different weights to features instead of simple binary val- ues. The main characteristic of this model is assigning more reasonable weight to features: these weights can be used to differentiate features each other according to their contri- bution to question classification. Furthermore, features are weighted depending on not only small labeled question col- lection but also large unlabeled question collection. Exper- imental results show that with this new feature-weighting model the SVM-based classifier outperforms the one with- out it to some extent.","PeriodicalId":127238,"journal":{"name":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2007.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Question classification is one of the most important sub- tasks in Question Answering systems. Now question tax- onomy is getting larger and more fine-grained for better answer generation. Many approaches to question classifi- cation have been proposed and achieve reasonable results. However, all previous approaches use certain learning al- gorithm to learn a classifier from binary feature vectors, extracted from small size of labeled examples. In this pa- per we propose a feature-weighting model which assigns different weights to features instead of simple binary val- ues. The main characteristic of this model is assigning more reasonable weight to features: these weights can be used to differentiate features each other according to their contri- bution to question classification. Furthermore, features are weighted depending on not only small labeled question col- lection but also large unlabeled question collection. Exper- imental results show that with this new feature-weighting model the SVM-based classifier outperforms the one with- out it to some extent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种有效的问题分类特征加权模型
问题分类是问答系统中最重要的子任务之一。现在,为了更好地生成答案,问题集正变得越来越大,越来越细粒度。人们提出了许多问题分类的方法,并取得了合理的结果。然而,以前所有的方法都使用一定的学习算法,从二进制特征向量中学习分类器,从小尺寸的标记示例中提取。在本文中,我们提出了一个特征加权模型,该模型为特征分配不同的权重,而不是简单的二元值。该模型的主要特点是为特征分配更合理的权重:这些权重可以根据特征对问题分类的贡献来区分特征。此外,特征的加权不仅取决于小的标记问题集,也取决于大的未标记问题集。实验结果表明,基于svm的分类器在一定程度上优于不使用svm的分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation and Performance Evaluation of an Adaptable Failure Detector for Distributed System Generalized Synchronization Theorem for Non-Autonomous Differential Equation with Application in Encryption Scheme Adaptive Trust Management in MANET The Study of Compost Quality Evaluation Modeling Method Based on Wavelet Neural Network for Sewage Treatment Game Theory Based Optimization of Security Configuration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1