Ying Xu, Qiaochu Jiang, Dr. Xianbao Sun, Prof. Gaolin Liang
{"title":"Morphological Transformation of Self-Assembled Peptide Nanostructures for Bioimaging Applications","authors":"Ying Xu, Qiaochu Jiang, Dr. Xianbao Sun, Prof. Gaolin Liang","doi":"10.1002/anse.202300039","DOIUrl":null,"url":null,"abstract":"<p>Stimuli-triggered in-situ morphological transformation of peptide nanomaterials may enhance the on-site accumulation and retention of the imaging agent cargos in the stimuli-rich regions, thus enabling precise, sensitive, and prolonged imaging of diseases. Moreover, this strategy permits the co-delivery of contrast agents and drugs with the smart “turn-on” ability, allowing for efficient disease theranostics. In light of the significance of this strategy in designing smart biomedical peptide materials, which remains scarcely reviewed in recent years, we herein provide this review. We summarize the bioimaging applications (i. e., fluorescence imaging, magnetic resonance imaging, and photoacoustic imaging) of these smart morphological transformation-based peptide materials, and highlight the remarkable breakthroughs. Besides, challenges to be addressed in this field are discussed.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"4 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & sensing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anse.202300039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Stimuli-triggered in-situ morphological transformation of peptide nanomaterials may enhance the on-site accumulation and retention of the imaging agent cargos in the stimuli-rich regions, thus enabling precise, sensitive, and prolonged imaging of diseases. Moreover, this strategy permits the co-delivery of contrast agents and drugs with the smart “turn-on” ability, allowing for efficient disease theranostics. In light of the significance of this strategy in designing smart biomedical peptide materials, which remains scarcely reviewed in recent years, we herein provide this review. We summarize the bioimaging applications (i. e., fluorescence imaging, magnetic resonance imaging, and photoacoustic imaging) of these smart morphological transformation-based peptide materials, and highlight the remarkable breakthroughs. Besides, challenges to be addressed in this field are discussed.