Graph-Based Semi-supervised Learning with Adaptive Similarity Estimation

Xianchao Zhang, Yansheng Jiang, Wenxin Liang, Xin Han
{"title":"Graph-Based Semi-supervised Learning with Adaptive Similarity Estimation","authors":"Xianchao Zhang, Yansheng Jiang, Wenxin Liang, Xin Han","doi":"10.1109/ICDM.2010.30","DOIUrl":null,"url":null,"abstract":"Graph-based semi-supervised learning algorithms have attracted a lot of attention. Constructing a good graph is playing an essential role for all these algorithms. Many existing graph construction methods(e.g. Gaussian Kernel etc.) require user input parameter, which is hard to configure manually. In this paper, we propose a parameter-free similarity measure Adaptive Similarity Estimation (ASE), which constructs the graph by adaptively optimizing linear combination of its neighbors. Experimental results show the effectiveness of our proposed method.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Graph-based semi-supervised learning algorithms have attracted a lot of attention. Constructing a good graph is playing an essential role for all these algorithms. Many existing graph construction methods(e.g. Gaussian Kernel etc.) require user input parameter, which is hard to configure manually. In this paper, we propose a parameter-free similarity measure Adaptive Similarity Estimation (ASE), which constructs the graph by adaptively optimizing linear combination of its neighbors. Experimental results show the effectiveness of our proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图的自适应相似度估计半监督学习
基于图的半监督学习算法引起了人们的广泛关注。构造一个好的图对于所有这些算法都起着至关重要的作用。许多现有的图构造方法(例如;高斯核等)需要用户输入参数,这是很难手动配置。本文提出了一种无参数的相似度度量自适应相似度估计(Adaptive similarity Estimation, ASE),该方法通过自适应优化相邻图的线性组合来构造图。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalized Probabilistic Matrix Factorizations for Collaborative Filtering MoodCast: Emotion Prediction via Dynamic Continuous Factor Graph Model Finding Local Anomalies in Very High Dimensional Space Efficient Probabilistic Latent Semantic Analysis with Sparsity Control Enhancing Single-Objective Projective Clustering Ensembles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1