Fault-Tolerance of Binarized and Stochastic Computing-based Neural Networks

Amir Ardakani, A. Ardakani, W. Gross
{"title":"Fault-Tolerance of Binarized and Stochastic Computing-based Neural Networks","authors":"Amir Ardakani, A. Ardakani, W. Gross","doi":"10.1109/SiPS52927.2021.00018","DOIUrl":null,"url":null,"abstract":"Both binarized and stochastic computing-based neural networks exploit bit-wise operations to replace expensive full-precision multiplications with simple XNOR gates and thus, offer low-cost hardware implementation. In stochastic computing, arithmetic computations are performed on sequences of random bits which can approximate any real values. Stochastic computing-based neural networks benefit from approximate computing and promote fault-tolerant architectures against soft errors in noisy environments. On the other hand, in binarized neural networks, real values are deterministically binarized using the sign function. As a result, any bit-flip in the binarized values dramatically changes the outcome of arithmetic computations and makes binarized neural networks more vulnerable against soft errors. In this paper, we compare these two neural networks against each other in terms of fault-tolerance and hardware complexity (i.e., area and energy efficiency).","PeriodicalId":103894,"journal":{"name":"2021 IEEE Workshop on Signal Processing Systems (SiPS)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS52927.2021.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Both binarized and stochastic computing-based neural networks exploit bit-wise operations to replace expensive full-precision multiplications with simple XNOR gates and thus, offer low-cost hardware implementation. In stochastic computing, arithmetic computations are performed on sequences of random bits which can approximate any real values. Stochastic computing-based neural networks benefit from approximate computing and promote fault-tolerant architectures against soft errors in noisy environments. On the other hand, in binarized neural networks, real values are deterministically binarized using the sign function. As a result, any bit-flip in the binarized values dramatically changes the outcome of arithmetic computations and makes binarized neural networks more vulnerable against soft errors. In this paper, we compare these two neural networks against each other in terms of fault-tolerance and hardware complexity (i.e., area and energy efficiency).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于二值化和随机计算的神经网络容错性
二值化和基于随机计算的神经网络都利用位操作,用简单的XNOR门取代昂贵的全精度乘法,从而提供低成本的硬件实现。在随机计算中,对可以近似任何实数的随机位序列进行算术计算。基于随机计算的神经网络受益于近似计算,并促进了对噪声环境中软错误的容错架构。另一方面,在二值化神经网络中,使用符号函数对实值进行确定性二值化。因此,二值化值中的任何位翻转都会极大地改变算术计算的结果,并使二值化神经网络更容易受到软错误的攻击。在本文中,我们将这两种神经网络在容错性和硬件复杂性(即面积和能源效率)方面进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reconfigurable Neural Synaptic Plasticity-Based Stochastic Deep Neural Network Computing Efficient Mind-wandering Detection System with GSR Signals on MM-SART Database Time sliding window for the detection of CCSK frames Implementation of a Two-Dimensional FFT/IFFT Processor for Real-Time High-Resolution Synthetic Aperture Radar Imaging TernGEMM: GEneral Matrix Multiply Library with Ternary Weights for Fast DNN Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1