Unsupervised Video Summarization via Dynamic Modeling-Based Hierarchical Clustering

Karim Ahmed, Nagia M. Ghanem, M. Ismail
{"title":"Unsupervised Video Summarization via Dynamic Modeling-Based Hierarchical Clustering","authors":"Karim Ahmed, Nagia M. Ghanem, M. Ismail","doi":"10.1109/ICMLA.2013.140","DOIUrl":null,"url":null,"abstract":"Mining the video data using unsupervised learning techniques can reveal important information regarding the internal visual content of large video databases. One of these information is the video summary which is a sequence of still pictures that represent the content of a video in such a way that the respective target group is rapidly provided with concise information about the content, while the essential message of the original video is preserved. In this paper, an enhanced method for generating static video summaries is presented. This method utilizes a modified dynamic modeling-based hierarchical clustering algorithm that depends on the temporal order and sequential nature of the video to fasten the clustering process. Video summaries generated by our method are compared with summaries generated by others found in the literature and the ground truth summaries. Experimental results indicate that the video summaries generated by the proposed method have a higher quality than others.","PeriodicalId":168867,"journal":{"name":"2013 12th International Conference on Machine Learning and Applications","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 12th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2013.140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Mining the video data using unsupervised learning techniques can reveal important information regarding the internal visual content of large video databases. One of these information is the video summary which is a sequence of still pictures that represent the content of a video in such a way that the respective target group is rapidly provided with concise information about the content, while the essential message of the original video is preserved. In this paper, an enhanced method for generating static video summaries is presented. This method utilizes a modified dynamic modeling-based hierarchical clustering algorithm that depends on the temporal order and sequential nature of the video to fasten the clustering process. Video summaries generated by our method are compared with summaries generated by others found in the literature and the ground truth summaries. Experimental results indicate that the video summaries generated by the proposed method have a higher quality than others.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于动态建模的分层聚类的无监督视频摘要
利用无监督学习技术挖掘视频数据可以揭示大型视频数据库内部视觉内容的重要信息。其中一种信息是视频摘要,它是一组静止的图片,这些图片代表了视频的内容,这样一来,各自的目标群体可以快速地获得关于内容的简明信息,同时保留了原始视频的基本信息。本文提出了一种增强的静态视频摘要生成方法。该方法利用一种改进的基于动态建模的分层聚类算法,该算法依赖于视频的时间顺序和序列性来加快聚类过程。将我们的方法生成的视频摘要与文献中其他人生成的摘要和ground truth摘要进行比较。实验结果表明,该方法生成的视频摘要具有较高的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incorporating Categorical Information for Enhanced Probabilistic Trajectory Prediction Technical Verification of Integrating Wearable Sensors into BSN-Based Telemedical Monitoring System Blood Glucose Level Prediction Using Physiological Models and Support Vector Regression Evolutionary Content Pre-fetching in Mobile Networks Improving the Transcription of Academic Lectures for Information Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1