Background Subtraction under Sudden Illumination Changes

L. Vosters, Caifeng Shan, T. Gritti
{"title":"Background Subtraction under Sudden Illumination Changes","authors":"L. Vosters, Caifeng Shan, T. Gritti","doi":"10.1109/AVSS.2010.72","DOIUrl":null,"url":null,"abstract":"Robust background subtraction under sudden illuminationchanges is a challenging problem. In this paper, wepropose an approach to address this issue, which combinesthe Eigenbackground algorithm together with a statisticalillumination model. The rst algorithm is used to give arough reconstruction of the input frame, while the secondone improves the foreground segmentation. We introduce anonline spatial likelihood model by detecting reliable backgroundand foreground pixels. Experimental results illustratethat our approach achieves consistently higher accuracycompared to several state-of-the-art algorithms","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

Robust background subtraction under sudden illuminationchanges is a challenging problem. In this paper, wepropose an approach to address this issue, which combinesthe Eigenbackground algorithm together with a statisticalillumination model. The rst algorithm is used to give arough reconstruction of the input frame, while the secondone improves the foreground segmentation. We introduce anonline spatial likelihood model by detecting reliable backgroundand foreground pixels. Experimental results illustratethat our approach achieves consistently higher accuracycompared to several state-of-the-art algorithms
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光照突然变化下的背景减法
光照突然变化下的鲁棒背景减法是一个具有挑战性的问题。在本文中,我们提出了一种将特征背景算法与统计照明模型相结合的方法来解决这个问题。第一种算法用于对输入帧进行粗略重建,第二种算法用于改善前景分割。我们通过检测可靠的背景和前景像素引入了一种在线空间似然模型。实验结果表明,与几种最先进的算法相比,我们的方法始终具有更高的精度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Background Modeling: An Edge Segment Based Moving Object Detection Approach Who, what, when, where, why and how in video analysis: an application centric view Trajectory Based Activity Discovery Local Abnormality Detection in Video Using Subspace Learning Functionality Delegation in Distributed Surveillance Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1