I. Schiopu, M. Gabbouj, Alexandros Iosifidis, B. Zeng, Shuaicheng Liu
{"title":"Subaperture image segmentation for lossless compression","authors":"I. Schiopu, M. Gabbouj, Alexandros Iosifidis, B. Zeng, Shuaicheng Liu","doi":"10.1109/IPTA.2017.8310083","DOIUrl":null,"url":null,"abstract":"The paper proposes an image segmentation method for lossless compression of plenoptic images. Each light-field image captured by the plenoptic camera is processed to obtain a stack of subaperture images. Each subaperture image is encoded by using a gradient-base detector which classifies the image edges and designs refined contexts for an improved prediction and segmentation. The paper's main contribution is a new segmentation method which generates a preliminary segmentation, either by scaling the intensity differences or by using a quantum cut based algorithm, and merges it with an edge ranking-based segmentation. The results show around 2% improved performance compared to the state-of-the-art for a dataset of 118 plenoptic images.","PeriodicalId":316356,"journal":{"name":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2017.8310083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The paper proposes an image segmentation method for lossless compression of plenoptic images. Each light-field image captured by the plenoptic camera is processed to obtain a stack of subaperture images. Each subaperture image is encoded by using a gradient-base detector which classifies the image edges and designs refined contexts for an improved prediction and segmentation. The paper's main contribution is a new segmentation method which generates a preliminary segmentation, either by scaling the intensity differences or by using a quantum cut based algorithm, and merges it with an edge ranking-based segmentation. The results show around 2% improved performance compared to the state-of-the-art for a dataset of 118 plenoptic images.