Recycling for Recycling: RoI Cropping by Recycling a Pre-Trained Attention Mechanism for Accurate Classification of Recyclables

Yeonghyeon Park, Myung Jin Kim, Wonseok Park, Juneho Yi
{"title":"Recycling for Recycling: RoI Cropping by Recycling a Pre-Trained Attention Mechanism for Accurate Classification of Recyclables","authors":"Yeonghyeon Park, Myung Jin Kim, Wonseok Park, Juneho Yi","doi":"10.1109/SIST58284.2023.10223525","DOIUrl":null,"url":null,"abstract":"Automated classification of recyclable waste is necessary to process a huge amount of recyclables for reuse. This research features recycling a pre-trained attention mechanism for cropping region of interest (RoI) for efficient classification of recyclable waste. We report that an attention mechanism pre-trained with the MNIST dataset, followed by simple morphological operations, successfully provides a bounding box for a recyclable object to be fed into object recognition models such as ResNet50 and EffNetB0. This way, we avoid the cost of annotating large datasets to train state-of-the-art object detection models such as YOLO and R-CNN. Experimental results using the Recyclable Solid Waste Dataset (RSWD) show that our attention-based RoI cropping method is effective enough to separate an object for recognition to achieve accurate classification of recyclables.","PeriodicalId":367406,"journal":{"name":"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIST58284.2023.10223525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automated classification of recyclable waste is necessary to process a huge amount of recyclables for reuse. This research features recycling a pre-trained attention mechanism for cropping region of interest (RoI) for efficient classification of recyclable waste. We report that an attention mechanism pre-trained with the MNIST dataset, followed by simple morphological operations, successfully provides a bounding box for a recyclable object to be fed into object recognition models such as ResNet50 and EffNetB0. This way, we avoid the cost of annotating large datasets to train state-of-the-art object detection models such as YOLO and R-CNN. Experimental results using the Recyclable Solid Waste Dataset (RSWD) show that our attention-based RoI cropping method is effective enough to separate an object for recognition to achieve accurate classification of recyclables.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为回收而回收:通过回收进行RoI裁剪——一种预先训练的注意机制,用于回收物的准确分类
对可回收垃圾进行自动分类是处理大量可回收垃圾进行再利用的必要条件。本研究的特点是回收一个预先训练的关注机制,用于种植感兴趣区域(RoI)的有效分类可回收废物。我们报告说,使用MNIST数据集预训练的注意机制,然后进行简单的形态学操作,成功地为可回收的物体提供了一个边界框,并将其输入到ResNet50和EffNetB0等物体识别模型中。通过这种方式,我们避免了标注大型数据集来训练最先进的目标检测模型(如YOLO和R-CNN)的成本。基于可回收固体废物数据集(RSWD)的实验结果表明,基于注意力的RoI裁剪方法能够有效地分离待识别的目标,实现可回收物的准确分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
University Distributed Computer Network Vulnerability Assessment Performance Analysis of Scaling NoSQL vs SQL: A Comparative Study of MongoDB, Cassandra, and PostgreSQL Analysis of the EMF Parameters of the Stator Winding in the Run-Down Mode for Diagnosing Faults in an Induction Motor About the Need to Attract Girls to Education Using the Stem Methodology in the Informatics Educational Program Preservation of Confidentiality Based on Homomorphic Encryption Library for IoT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1