Geometric median in nearly linear time

Michael B. Cohen, Y. Lee, G. Miller, J. Pachocki, Aaron Sidford
{"title":"Geometric median in nearly linear time","authors":"Michael B. Cohen, Y. Lee, G. Miller, J. Pachocki, Aaron Sidford","doi":"10.1145/2897518.2897647","DOIUrl":null,"url":null,"abstract":"In this paper we provide faster algorithms for solving the geometric median problem: given n points in d compute a point that minimizes the sum of Euclidean distances to the points. This is one of the oldest non-trivial problems in computational geometry yet despite a long history of research the previous fastest running times for computing a (1+є)-approximate geometric median were O(d· n4/3є−8/3) by Chin et. al, Õ(dexpє−4logє−1) by Badoiu et. al, O(nd+poly(d,є−1)) by Feldman and Langberg, and the polynomial running time of O((nd)O(1)log1/є) by Parrilo and Sturmfels and Xue and Ye. In this paper we show how to compute such an approximate geometric median in time O(ndlog3n/є) and O(dє−2). While our O(dє−2) is a fairly straightforward application of stochastic subgradient descent, our O(ndlog3n/є) time algorithm is a novel long step interior point method. We start with a simple O((nd)O(1)log1/є) time interior point method and show how to improve it, ultimately building an algorithm that is quite non-standard from the perspective of interior point literature. Our result is one of few cases of outperforming standard interior point theory. Furthermore, it is the only case we know of where interior point methods yield a nearly linear time algorithm for a canonical optimization problem that traditionally requires superlinear time.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"136","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897518.2897647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 136

Abstract

In this paper we provide faster algorithms for solving the geometric median problem: given n points in d compute a point that minimizes the sum of Euclidean distances to the points. This is one of the oldest non-trivial problems in computational geometry yet despite a long history of research the previous fastest running times for computing a (1+є)-approximate geometric median were O(d· n4/3є−8/3) by Chin et. al, Õ(dexpє−4logє−1) by Badoiu et. al, O(nd+poly(d,є−1)) by Feldman and Langberg, and the polynomial running time of O((nd)O(1)log1/є) by Parrilo and Sturmfels and Xue and Ye. In this paper we show how to compute such an approximate geometric median in time O(ndlog3n/є) and O(dє−2). While our O(dє−2) is a fairly straightforward application of stochastic subgradient descent, our O(ndlog3n/є) time algorithm is a novel long step interior point method. We start with a simple O((nd)O(1)log1/є) time interior point method and show how to improve it, ultimately building an algorithm that is quite non-standard from the perspective of interior point literature. Our result is one of few cases of outperforming standard interior point theory. Furthermore, it is the only case we know of where interior point methods yield a nearly linear time algorithm for a canonical optimization problem that traditionally requires superlinear time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近线性时间内的几何中值
在本文中,我们提供了更快的算法来解决几何中位数问题:给定d中的n个点,计算一个点,使到这些点的欧氏距离和最小。这是计算几何中最古老的非平凡问题之一,尽管研究历史悠久,但之前计算(1+ n)-近似几何中位数的最快运行时间是Chin等人的O(d·n4/ 3n - 8/3), Badoiu等人的Õ(dexpn - 4logn - 1), Feldman和Langberg的O(nd+poly(d, n- 1)),以及Parrilo和Sturmfels和Xue和Ye的O((nd)O(1)log1/ n)的多项式运行时间。在本文中,我们展示了如何在时间O(ndlog3n/ tu)和O(dtu−2)内计算这样的近似几何中位数。虽然我们的O(dtu - 2)是随机亚梯度下降的一个相当直接的应用,但我们的O(ndlog3n/ tu)时间算法是一种新颖的长步内点法。我们从一个简单的O((nd)O(1)log1/ n)时间内点方法开始,并展示如何改进它,最终构建一个从内点文献的角度来看相当非标准的算法。我们的结果是少数几个优于标准内点理论的例子之一。此外,这是我们所知道的唯一一种情况,即对于传统上需要超线性时间的规范优化问题,内点法产生近线性时间算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exponential separation of communication and external information Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Explicit two-source extractors and resilient functions Constant-rate coding for multiparty interactive communication is impossible Approximating connectivity domination in weighted bounded-genus graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1