Image-Based Maritime Obstacle Detection Using Global Sparsity Potentials

Xiaozheng Mou, Han Wang
{"title":"Image-Based Maritime Obstacle Detection Using Global Sparsity Potentials","authors":"Xiaozheng Mou, Han Wang","doi":"10.6109/jicce.2016.14.2.129","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel algorithm for image-based maritime obstacle detection using global sparsity potentials (GSPs), in which “global” refers to the entire sea area. The horizon line is detected first to segment the sea area as the region of interest (ROI). Considering the geometric relationship between the camera and the sea surface, variable-size image windows are adopted to sample patches in the ROI. Then, each patch is represented by its texture feature, and its average distance to all the other patches is taken as the value of its GSP. Thereafter, patches with a smaller GSP are clustered as the sea surface, and patches with a higher GSP are taken as the obstacle candidates. Finally, the candidates far from the mean feature of the sea surface are selected and aggregated as the obstacles. Experimental results verify that the proposed approach is highly accurate as compared to other methods, such as the traditional feature space reclustering method and a state-of-the-art saliency detection method.","PeriodicalId":272551,"journal":{"name":"J. Inform. and Commun. Convergence Engineering","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inform. and Commun. Convergence Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6109/jicce.2016.14.2.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we present a novel algorithm for image-based maritime obstacle detection using global sparsity potentials (GSPs), in which “global” refers to the entire sea area. The horizon line is detected first to segment the sea area as the region of interest (ROI). Considering the geometric relationship between the camera and the sea surface, variable-size image windows are adopted to sample patches in the ROI. Then, each patch is represented by its texture feature, and its average distance to all the other patches is taken as the value of its GSP. Thereafter, patches with a smaller GSP are clustered as the sea surface, and patches with a higher GSP are taken as the obstacle candidates. Finally, the candidates far from the mean feature of the sea surface are selected and aggregated as the obstacles. Experimental results verify that the proposed approach is highly accurate as compared to other methods, such as the traditional feature space reclustering method and a state-of-the-art saliency detection method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图像的基于全局稀疏度的海上障碍物检测
在本文中,我们提出了一种新的基于图像的海上障碍物检测算法,该算法使用全局稀疏性势(GSPs),其中“全局”指的是整个海域。首先检测地平线,将海域分割为感兴趣区域(ROI)。考虑到相机与海面之间的几何关系,采用变大小的图像窗口对ROI中的斑块进行采样。然后,每个patch用其纹理特征表示,取其到所有其他patch的平均距离作为其GSP值。然后,将GSP较小的斑块聚类为海面,将GSP较大的斑块聚类为候选障碍物。最后,选取离海面平均特征较远的候选区域作为障碍物进行聚集。实验结果表明,与传统的特征空间重新聚类方法和最先进的显著性检测方法相比,该方法具有较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low Power Time Synchronization for Wireless Sensor Networks Using Density-Driven Scheduling Smart Home System Using Internet of Things Odoo Data Mining Module Using Market Basket Analysis Seafarers Walking on an Unstable Platform: Comparisons of Time and Frequency Domain Analyses for Gait Event Detection Navigator Lookout Activity Classification Using Wearable Accelerometers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1