I. Preda, J. Castellon, S. Agnel, P. Notingher, M. Frechette, T. Heid, H. Couderc, N. Freebody, A. Vaughan
{"title":"Conduction currents and time to frequency domain transformation for epoxy resin nanocomposites","authors":"I. Preda, J. Castellon, S. Agnel, P. Notingher, M. Frechette, T. Heid, H. Couderc, N. Freebody, A. Vaughan","doi":"10.1109/ICSD.2013.6619711","DOIUrl":null,"url":null,"abstract":"This paper concerns several epoxy resin nanocomposites. A DER 332 epoxy resin was chosen as matrix and nanosilica and/or Boron Nitride were chosen as fillers. Conduction currents results obtained using Polarization and Depolarization Current (PDC) tests at room temperature are presented and discussed. Different conduction phenomena were observed following the analysis of the variation of the current density versus the applied electric field. Using the depolarization currents obtained at room temperature under several applied electric fields, time to frequency domain transformation was performed. For this purpose, the currents were fitted using a general time response function based on Curie-von Schweidler law and on the transform proposed by Hamon. The empiric law proposed by Helegeson was also investigated. The time to frequency domain transformed spectra were compared with those obtained by Dielectric Spectroscopy.","PeriodicalId":437475,"journal":{"name":"2013 IEEE International Conference on Solid Dielectrics (ICSD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Solid Dielectrics (ICSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSD.2013.6619711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This paper concerns several epoxy resin nanocomposites. A DER 332 epoxy resin was chosen as matrix and nanosilica and/or Boron Nitride were chosen as fillers. Conduction currents results obtained using Polarization and Depolarization Current (PDC) tests at room temperature are presented and discussed. Different conduction phenomena were observed following the analysis of the variation of the current density versus the applied electric field. Using the depolarization currents obtained at room temperature under several applied electric fields, time to frequency domain transformation was performed. For this purpose, the currents were fitted using a general time response function based on Curie-von Schweidler law and on the transform proposed by Hamon. The empiric law proposed by Helegeson was also investigated. The time to frequency domain transformed spectra were compared with those obtained by Dielectric Spectroscopy.