Fair Comparison of Gossip Algorithms over Large-Scale Random Topologies

Ruijing Hu, Julien Sopena, L. Arantes, Pierre Sens, I. Demeure
{"title":"Fair Comparison of Gossip Algorithms over Large-Scale Random Topologies","authors":"Ruijing Hu, Julien Sopena, L. Arantes, Pierre Sens, I. Demeure","doi":"10.1109/SRDS.2012.28","DOIUrl":null,"url":null,"abstract":"We present a thorough performance comparison of three widely used probabilistic gossip algorithms over well-known random graphs. These graphs represent some large-scale network topologies: Bernoulli (or Erdos-Rényi) graph, random geometric graph, and scale-free graph. In order to conduct such a fair comparison, particularly in terms of reliability, we propose a new parameter, called effectual fan out. For a given topology and gossip algorithm, the effectual fan out characterizes the mean dissemination power of infected sites. For large-scale networks, the effectual fan out has thus a strong linear correlation with message complexity. It enables to make an accurate analysis of the behavior of a gossip algorithm over a topology. Furthermore, it simplifies the theoretical comparison of different gossip algorithms on the topology. Based on extensive experiments on top of OMNet++ simulator, which make use of the effectual fan out, we discuss the impact of topologies and gossip algorithms on performance, and how to combine them to have the best gain in terms of reliability.","PeriodicalId":447700,"journal":{"name":"2012 IEEE 31st Symposium on Reliable Distributed Systems","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 31st Symposium on Reliable Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2012.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We present a thorough performance comparison of three widely used probabilistic gossip algorithms over well-known random graphs. These graphs represent some large-scale network topologies: Bernoulli (or Erdos-Rényi) graph, random geometric graph, and scale-free graph. In order to conduct such a fair comparison, particularly in terms of reliability, we propose a new parameter, called effectual fan out. For a given topology and gossip algorithm, the effectual fan out characterizes the mean dissemination power of infected sites. For large-scale networks, the effectual fan out has thus a strong linear correlation with message complexity. It enables to make an accurate analysis of the behavior of a gossip algorithm over a topology. Furthermore, it simplifies the theoretical comparison of different gossip algorithms on the topology. Based on extensive experiments on top of OMNet++ simulator, which make use of the effectual fan out, we discuss the impact of topologies and gossip algorithms on performance, and how to combine them to have the best gain in terms of reliability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模随机拓扑上八卦算法的公平比较
我们提出了一个全面的性能比较三种广泛使用的概率八卦算法在众所周知的随机图。这些图表示了一些大规模的网络拓扑:伯努利图、随机几何图和无标度图。为了进行这样一个公平的比较,特别是在可靠性方面,我们提出了一个新的参数,称为有效扇出。对于给定的拓扑结构和八卦算法,有效扇出表征了受感染站点的平均传播能力。对于大规模网络,有效扇出与消息复杂度有很强的线性相关性。它能够对拓扑上的八卦算法的行为进行准确的分析。进一步简化了拓扑上不同八卦算法的理论比较。在利用有效扇出的omnet++模拟器上进行了大量的实验,讨论了拓扑和八卦算法对性能的影响,以及如何将它们结合起来以获得最佳的可靠性增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Identifying Root Causes of Faults in Service-Based Applications Query Plan Execution in a Heterogeneous Stream Management System for Situational Awareness Towards Reliable Communication in Intelligent Transportation Systems RADAR: Adaptive Rate Allocation in Distributed Stream Processing Systems under Bursty Workloads Availability Modeling and Analysis for Data Backup and Restore Operations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1