Ultrastructural mapping of neural circuitry: A computational framework

James R. Anderson, B. Jones, Jia-Hui Yang, M. V. Shaw, C. Watt, P. Koshevoy, J. Spaltenstein, E. Jurrus, K. Venkataraju, R. Whitaker, D. Mastronarde, T. Tasdizen, R. Marc
{"title":"Ultrastructural mapping of neural circuitry: A computational framework","authors":"James R. Anderson, B. Jones, Jia-Hui Yang, M. V. Shaw, C. Watt, P. Koshevoy, J. Spaltenstein, E. Jurrus, K. Venkataraju, R. Whitaker, D. Mastronarde, T. Tasdizen, R. Marc","doi":"10.1109/ISBI.2009.5193257","DOIUrl":null,"url":null,"abstract":"Complete mapping of neuronal networks requires data acquisition at synaptic resolution with canonical coverage of tissues and robust neuronal classification. Transmission electron microscopy (TEM) remains the optimal tool for network mapping. However, capturing high resolution, large, serial section TEM (ssTEM) image volumes is complicated by the need to precisely mosaic distorted image tiles and subsequently register distorted mosaics. Moreover, most cell or tissue class markers are not optimized for TEM imaging. We present a complete framework for neuronal reconstruction at ultrastructural resolution, allowing the elucidation of complete neuronal circuits. This workflow combines TEM-compliant small molecule profiling with automated image tile mosaicking, automated slice-to-slice image registration and terabyte-scale image browsing for volume annotation. Networks that previously would require decades of assembly can now be completed in months, enabling large-scale connectivity analyses of both new and legacy data. Additionally, these approaches can be extended to other tissue or biological network systems.","PeriodicalId":272938,"journal":{"name":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2009.5193257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Complete mapping of neuronal networks requires data acquisition at synaptic resolution with canonical coverage of tissues and robust neuronal classification. Transmission electron microscopy (TEM) remains the optimal tool for network mapping. However, capturing high resolution, large, serial section TEM (ssTEM) image volumes is complicated by the need to precisely mosaic distorted image tiles and subsequently register distorted mosaics. Moreover, most cell or tissue class markers are not optimized for TEM imaging. We present a complete framework for neuronal reconstruction at ultrastructural resolution, allowing the elucidation of complete neuronal circuits. This workflow combines TEM-compliant small molecule profiling with automated image tile mosaicking, automated slice-to-slice image registration and terabyte-scale image browsing for volume annotation. Networks that previously would require decades of assembly can now be completed in months, enabling large-scale connectivity analyses of both new and legacy data. Additionally, these approaches can be extended to other tissue or biological network systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经回路的超微结构映射:一个计算框架
完整的神经元网络映射需要在突触分辨率上获取数据,具有典型的组织覆盖和强大的神经元分类。透射电子显微镜(TEM)仍然是网络测绘的最佳工具。然而,由于需要精确地拼接扭曲的图像块并随后对扭曲的拼接进行配准,因此捕获高分辨率,大,串行切片TEM (system)图像体积变得复杂。此外,大多数细胞或组织类标记物不适合TEM成像。我们提出了一个完整的框架,神经元重建在超微结构分辨率,允许完整的神经元电路的阐明。该工作流程结合了符合tem标准的小分子分析、自动图像拼接、自动切片到切片图像配准和tb级图像浏览,以进行体积注释。以前需要数十年组装的网络现在可以在几个月内完成,从而可以对新数据和遗留数据进行大规模连接分析。此外,这些方法可以扩展到其他组织或生物网络系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic alignment of stacks of filament data Analysis of nerve activity and optical signals from mouse brain stem to identify cells generating respiratory rhythms Segmentation and classification of triple negative breast cancers using DCE-MRI Improved registration for large electron microscopy images Special purpose 3-D reconstruction and restoration algorithms for electron microscopy of nanoscale objects and an enabling software toolkit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1