Optimal Control of State-Space Systems with Hard Bounds on Control Inputs and State Variables

M. Harker, G. Rath, John W. Handler
{"title":"Optimal Control of State-Space Systems with Hard Bounds on Control Inputs and State Variables","authors":"M. Harker, G. Rath, John W. Handler","doi":"10.1109/MECO58584.2023.10154995","DOIUrl":null,"url":null,"abstract":"This paper presents a new numerical method for treating the problem of optimal control when there are hard bounds on the control variables (e.g., limit switches on a linear drive, current limits to motor input, etc.) and/or on the state/output variables (e.g., obstacle avoidance). This is accomplished by means of a new approach for discretizing the optimal control problem, while introducing regularization terms to reduce the solution space to smooth functions. Further, by introducing a consistent discretization of the state-space equations with arbitrary boundary conditions, the problem is cast as a problem of quadratic programming, whereby (hard) bounds can be put on any of the state-space variables (i.e., input or output). The method is demonstrated on the example of a pendulum on a cart. Bounded optimal control solutions are computed for two examples: Velocity bounds are placed on the cart in the classic optimal control problem; a variation of trajectory tracking where instead of specifying a single valued path, the bounds of the trajectory of the pendulum bob are specified, and the required input to keep the bob within these bounds during its motion is computed.","PeriodicalId":187825,"journal":{"name":"2023 12th Mediterranean Conference on Embedded Computing (MECO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 12th Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO58584.2023.10154995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new numerical method for treating the problem of optimal control when there are hard bounds on the control variables (e.g., limit switches on a linear drive, current limits to motor input, etc.) and/or on the state/output variables (e.g., obstacle avoidance). This is accomplished by means of a new approach for discretizing the optimal control problem, while introducing regularization terms to reduce the solution space to smooth functions. Further, by introducing a consistent discretization of the state-space equations with arbitrary boundary conditions, the problem is cast as a problem of quadratic programming, whereby (hard) bounds can be put on any of the state-space variables (i.e., input or output). The method is demonstrated on the example of a pendulum on a cart. Bounded optimal control solutions are computed for two examples: Velocity bounds are placed on the cart in the classic optimal control problem; a variation of trajectory tracking where instead of specifying a single valued path, the bounds of the trajectory of the pendulum bob are specified, and the required input to keep the bob within these bounds during its motion is computed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
控制输入和状态变量有硬界的状态空间系统的最优控制
本文提出了一种新的数值方法,用于处理控制变量(如线性驱动器的限位开关、电机输入的电流限制等)和状态/输出变量(如避障)存在硬边界时的最优控制问题。这是通过一种新的离散化最优控制问题的方法来实现的,同时引入正则化项来缩小光滑函数的解空间。此外,通过引入具有任意边界条件的状态空间方程的一致离散化,该问题被转换为二次规划问题,其中(硬)边界可以放在任何状态空间变量(即输入或输出)上。以小车摆为例,对该方法进行了验证。计算了两个实例的有界最优控制解:在经典最优控制问题中,在小车上设置速度边界;轨迹跟踪的一种变化,其中不是指定一个单值路径,而是指定摆锤轨迹的边界,并计算在其运动期间保持摆锤在这些边界内所需的输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Blockchain Platforms for Generation and Verification of Diplomas Minimizing the Total Completion Time of Jobs for a Permutation Flow-Shop System Double Buffered Angular Speed Measurement Method for Self-Calibration of Magnetoresistive Sensors Quantum Resilient Public Key Cryptography in Internet of Things Crop yield forecasting with climate data using PCA and Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1