SPH Fluids for Viscous Jet Buckling

Luiz Fernando de Souza Andrade, Marcos Sandim, Fabiano Petronetto, P. Pagliosa, Afonso Paiva
{"title":"SPH Fluids for Viscous Jet Buckling","authors":"Luiz Fernando de Souza Andrade, Marcos Sandim, Fabiano Petronetto, P. Pagliosa, Afonso Paiva","doi":"10.1109/SIBGRAPI.2014.47","DOIUrl":null,"url":null,"abstract":"We present a novel meshfree technique for animating free surface viscous liquids with jet buckling effects, such as coiling and folding. Our technique is based on Smoothed Particle Hydrodynamics (SPH) fluids and allows more realistic and complex viscous behaviors than the preceding SPH frameworks in computer animation literature. The viscous liquid is modeled by a non-Newtonian fluid flow and the variable viscosity under shear stress is achieved using a viscosity model known as Cross model. The proposed technique is efficient and stable, and our framework can animate scenarios with high resolution of SPH particles in which the simulation speed is significantly accelerated by using Computer Unified Device Architecture (CUDA) computing platform. This work also includes several examples that demonstrate the ability of our technique.","PeriodicalId":146229,"journal":{"name":"2014 27th SIBGRAPI Conference on Graphics, Patterns and Images","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 27th SIBGRAPI Conference on Graphics, Patterns and Images","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2014.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We present a novel meshfree technique for animating free surface viscous liquids with jet buckling effects, such as coiling and folding. Our technique is based on Smoothed Particle Hydrodynamics (SPH) fluids and allows more realistic and complex viscous behaviors than the preceding SPH frameworks in computer animation literature. The viscous liquid is modeled by a non-Newtonian fluid flow and the variable viscosity under shear stress is achieved using a viscosity model known as Cross model. The proposed technique is efficient and stable, and our framework can animate scenarios with high resolution of SPH particles in which the simulation speed is significantly accelerated by using Computer Unified Device Architecture (CUDA) computing platform. This work also includes several examples that demonstrate the ability of our technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于粘性射流屈曲的SPH流体
我们提出了一种新的无网格技术来模拟具有射流屈曲效应的自由表面粘性液体,如卷曲和折叠。我们的技术是基于光滑粒子流体力学(SPH)流体,并允许更真实和复杂的粘性行为比以前的SPH框架在计算机动画文献。粘性液体采用非牛顿流体流动模型,剪切应力作用下的可变粘度采用一种称为Cross模型的粘度模型来实现。该框架具有高效、稳定的特点,可以实现高分辨率SPH粒子场景的动画化,并通过CUDA计算平台大大加快了仿真速度。这项工作还包括几个例子,证明了我们的技术的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interactive Object Class Segmentation for Mobile Devices WebcamPaperPen: A Low-Cost Graphics Tablet A Sketch-Based Modeling Framework Based on Adaptive Meshes Evolutionary Optimization Applied for Fine-Tuning Parameter Estimation in Optical Flow-Based Environments Face Sketch Recognition from Local Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1