Texture defect detection with combined local homogeneity analysis and discrete cosine transform

A. Rebhi, S. Abid
{"title":"Texture defect detection with combined local homogeneity analysis and discrete cosine transform","authors":"A. Rebhi, S. Abid","doi":"10.1109/ICEESA.2013.6578359","DOIUrl":null,"url":null,"abstract":"In this paper a new technique for defect detection in gray-level textured images is proposed. The first step of the algorithm is devoted to compute the local homogeneity of each pixel to construct a new homogeneity image denoted as (H-image). The second step consists in dividing the H-image into squared blocks and applying the discrete cosine transform (DCT) and then representative energy features of each DCT block are extracted. The defect blocks can be determined by a multivariate statistical method. Finally, a simple thresholding method is applied to extract defective areas. Simulations on different textured images and different defect aspects show good promising results.","PeriodicalId":212631,"journal":{"name":"2013 International Conference on Electrical Engineering and Software Applications","volume":"262 1-2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Electrical Engineering and Software Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEESA.2013.6578359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper a new technique for defect detection in gray-level textured images is proposed. The first step of the algorithm is devoted to compute the local homogeneity of each pixel to construct a new homogeneity image denoted as (H-image). The second step consists in dividing the H-image into squared blocks and applying the discrete cosine transform (DCT) and then representative energy features of each DCT block are extracted. The defect blocks can be determined by a multivariate statistical method. Finally, a simple thresholding method is applied to extract defective areas. Simulations on different textured images and different defect aspects show good promising results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合局部均匀性分析和离散余弦变换的纹理缺陷检测
提出了一种新的灰度纹理图像缺陷检测方法。算法的第一步是计算每个像素的局部均匀性,构造一个新的均匀性图像,记为(H-image)。第二步是将h -图像分割成平方块并应用离散余弦变换(DCT),然后提取每个DCT块的代表性能量特征。缺陷块可以通过多元统计方法确定。最后,采用简单的阈值法提取缺陷区域。对不同纹理图像和不同缺陷方面进行了仿真,取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal expansion of linear system using generalized orthogonal basis Photovoltaic properties of devices using fullerene and copper-phthalocyanine doped with poly(3-hexylthiophène) Simulation of a Tunisian wind farm of Sidi-Daoud using PSAT Adaptive observer approach for actuators multiplicative faults detection and isolation Discrete time sliding mode control of PMSM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1