INSIGHTS! - a modern deep learning approach to data analysis using Feature Name Substitution Network

K. M. Yatheendra Pravan, Udhayakumar Shanmugam, P. Rajaraman
{"title":"INSIGHTS! - a modern deep learning approach to data analysis using Feature Name Substitution Network","authors":"K. M. Yatheendra Pravan, Udhayakumar Shanmugam, P. Rajaraman","doi":"10.1109/ICCIDS.2019.8862071","DOIUrl":null,"url":null,"abstract":"The core of technological advancements in the current trend is based on the manipulation of the inestimable amount of data that is generated every second around us. Gaining interesting insights from the data is of utmost importance and the need of the hour. The proposed system makes use of advancements in the domain of deep learning by implementing various algorithms and methodologies to automate the process of data analytics. The intended insights platform is developed using various deep learning frameworks such as Tensorflow, Keras and delivered to the end user as a web platform using Django Framework. The underlying algorithm of insights which makes the automation of analytics possible relies on the efficacy of feature name substitution network implemented using LSTM and the enhanced correlation analysis. These are then used to determine a measure called Insight Relevance Index (IRI) which then updates the global rule set records in the centralized data store accordingly. Employing the proposed system will definitely aid the profit and future growth of an institution or an organization.","PeriodicalId":196915,"journal":{"name":"2019 International Conference on Computational Intelligence in Data Science (ICCIDS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Intelligence in Data Science (ICCIDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIDS.2019.8862071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The core of technological advancements in the current trend is based on the manipulation of the inestimable amount of data that is generated every second around us. Gaining interesting insights from the data is of utmost importance and the need of the hour. The proposed system makes use of advancements in the domain of deep learning by implementing various algorithms and methodologies to automate the process of data analytics. The intended insights platform is developed using various deep learning frameworks such as Tensorflow, Keras and delivered to the end user as a web platform using Django Framework. The underlying algorithm of insights which makes the automation of analytics possible relies on the efficacy of feature name substitution network implemented using LSTM and the enhanced correlation analysis. These are then used to determine a measure called Insight Relevance Index (IRI) which then updates the global rule set records in the centralized data store accordingly. Employing the proposed system will definitely aid the profit and future growth of an institution or an organization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
见解!-使用特征名称替代网络进行数据分析的现代深度学习方法
在当前的趋势中,技术进步的核心是基于对我们周围每秒产生的不可估量的数据的操纵。从数据中获得有趣的见解是至关重要的,也是当前的需要。提出的系统通过实现各种算法和方法来自动化数据分析过程,利用深度学习领域的进步。预期的洞察平台是使用各种深度学习框架(如Tensorflow, Keras)开发的,并使用Django框架作为web平台交付给最终用户。使分析自动化成为可能的底层洞察算法依赖于使用LSTM实现的特征名称替换网络的有效性和增强的相关性分析。然后使用这些数据来确定称为Insight Relevance Index (IRI)的度量,IRI随后相应地更新集中式数据存储中的全局规则集记录。采用拟议的系统肯定会有助于一个机构或组织的利润和未来的增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Region Based Convolutional Neural Network for Human-Elephant Conflict Management System A Comparison of Regression Models for Prediction of Graduate Admissions Feature selection with LASSO and VSURF to model mechanical properties for investment casting Med-Recommender System for Predictive Analysis of Hospitals and Doctors Analysis of Facial Landmark Features to determine the best subset for finding Face Orientation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1