Ant Colony Optimization for Rule Induction with Simulated Annealing for Terms Selection

R. Saian, K. Ku-Mahamud
{"title":"Ant Colony Optimization for Rule Induction with Simulated Annealing for Terms Selection","authors":"R. Saian, K. Ku-Mahamud","doi":"10.1109/UKSim.2012.115","DOIUrl":null,"url":null,"abstract":"This paper proposes a sequential covering based algorithm that uses an ant colony optimization algorithm to directly extract classification rules from the data set. The proposed algorithm uses a Simulated Annealing algorithm to optimize terms selection, while growing a rule. The proposed algorithm minimizes the problem of a low quality discovered rule by an ant in a colony, where the rule discovered by an ant is not the best quality rule, by optimizing the terms selection in rule construction. Seventeen data sets which consist of discrete and continuous data from a UCI repository are used to evaluate the performance of the proposed algorithm. Promising results are obtained when compared to the Ant-Miner algorithm and PART algorithm in terms of average predictive accuracy of the discovered classification rules.","PeriodicalId":405479,"journal":{"name":"2012 UKSim 14th International Conference on Computer Modelling and Simulation","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 UKSim 14th International Conference on Computer Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKSim.2012.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper proposes a sequential covering based algorithm that uses an ant colony optimization algorithm to directly extract classification rules from the data set. The proposed algorithm uses a Simulated Annealing algorithm to optimize terms selection, while growing a rule. The proposed algorithm minimizes the problem of a low quality discovered rule by an ant in a colony, where the rule discovered by an ant is not the best quality rule, by optimizing the terms selection in rule construction. Seventeen data sets which consist of discrete and continuous data from a UCI repository are used to evaluate the performance of the proposed algorithm. Promising results are obtained when compared to the Ant-Miner algorithm and PART algorithm in terms of average predictive accuracy of the discovered classification rules.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模拟退火的蚁群规则归纳算法
本文提出了一种基于序列覆盖的算法,该算法使用蚁群优化算法直接从数据集中提取分类规则。该算法采用模拟退火算法优化术语选择,同时生成规则。该算法通过优化规则构建中的术语选择,最大限度地减少了蚁群中蚂蚁发现的规则质量较低的问题,其中蚂蚁发现的规则不是最优质量的规则。使用来自UCI存储库的离散和连续数据组成的17个数据集来评估所提出算法的性能。在发现的分类规则的平均预测准确率方面,与Ant-Miner算法和PART算法进行了比较,取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Method for Migration of Tasks with Duplication A Quantitative Evaluation Method of Landmark Effectiveness for Pedestrian Navigation Simulation of DPCM and ADM Systems A Genetic Algorithm Approach for Solving Group Technology Problem with Process Plan Flexibility Complexity Measure as a Feature to Classify Schizophrenic and Healthy Participants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1