SFTRLS-Based Speech Enhancement Method Using CNN to Determine the Noise Type and the Optimal Forgetting Factor

De-You Tang, Guoqiang Chen
{"title":"SFTRLS-Based Speech Enhancement Method Using CNN to Determine the Noise Type and the Optimal Forgetting Factor","authors":"De-You Tang, Guoqiang Chen","doi":"10.1109/PRML52754.2021.9520741","DOIUrl":null,"url":null,"abstract":"This paper presents a speech enhancement method combining the convolutional neural network (CNN) and SFTRLS, SFTRLS-CNN, which consists of two tiers of CNN to customize parameters for the SFTRLS algorithm. The first CNN identifies noise type, and the second CNN matches the best forgetting factor. The experimental results show that the noise recognition rate of SFTRLS-CNN goes up to 99.97% and displays better performance than the k-nearest neighbor (KNN) and the support vector machine (SVM). The accuracy ratio of matching the best forgetting factor for the SFTRLS is up to 99.40%. The improvement of the perceptual evaluation of speech quality (PESQ) is 23%, and the decrease of log-spectral distortion (LSD) is 4% on average. SFTRLS-CNN also improves the SNR of all speeches significantly.","PeriodicalId":429603,"journal":{"name":"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRML52754.2021.9520741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a speech enhancement method combining the convolutional neural network (CNN) and SFTRLS, SFTRLS-CNN, which consists of two tiers of CNN to customize parameters for the SFTRLS algorithm. The first CNN identifies noise type, and the second CNN matches the best forgetting factor. The experimental results show that the noise recognition rate of SFTRLS-CNN goes up to 99.97% and displays better performance than the k-nearest neighbor (KNN) and the support vector machine (SVM). The accuracy ratio of matching the best forgetting factor for the SFTRLS is up to 99.40%. The improvement of the perceptual evaluation of speech quality (PESQ) is 23%, and the decrease of log-spectral distortion (LSD) is 4% on average. SFTRLS-CNN also improves the SNR of all speeches significantly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于sftrls的语音增强方法,利用CNN确定噪声类型和最佳遗忘因子
本文提出了一种将卷积神经网络(CNN)与SFTRLS相结合的语音增强方法,即SFTRLS-CNN,该方法由两层CNN组成,为SFTRLS算法定制参数。第一个CNN识别噪声类型,第二个CNN匹配最佳遗忘因子。实验结果表明,SFTRLS-CNN的噪声识别率高达99.97%,优于k近邻(KNN)和支持向量机(SVM)。对最佳遗忘因子的匹配正确率达99.40%。语音质量感知评价(PESQ)平均提高23%,对数频谱失真(LSD)平均降低4%。SFTRLS-CNN也显著提高了所有演讲的信噪比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Robot for Cleaning Garbage Based on OpenCV Research on Tibetan-Chinese Machine Translation Based on Multi-Strategy Processing A Survey of Object Detection Based on CNN and Transformer A Review of Segmentation and Classification for Retinal Optical Coherence Tomography Images Research on the Methods of Speech Synthesis Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1