Prediction of battery manufacturing capacity based on reinforcement learning network combination model

N. Li, Yue Wang, Ziyun Wang, Yan Wang
{"title":"Prediction of battery manufacturing capacity based on reinforcement learning network combination model","authors":"N. Li, Yue Wang, Ziyun Wang, Yan Wang","doi":"10.1109/CAC57257.2022.10054924","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of the battery manufacturing capacity prediction, this paper presents a prediction method based on reinforcement learning network combination model. First, the combined model expression for the battery manufacturing capacity prediction is designed. Then, reinforcement learning is used to construct the hidden layer learning environment of recurrent neural network and long-short-termmemory network model, to obtain the optimal number of hidden layers, and then to construct the weight learning environment of the battery manufacturing capacity combination prediction model and a combined forecasting model of battery manufacturing capacity after iterative training. Finally, a case simulation on actual battery workshop data shows the effectiveness and practicability of the proposed algorithm on solving the battery manufacturing capacity prediction problem.","PeriodicalId":287137,"journal":{"name":"2022 China Automation Congress (CAC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 China Automation Congress (CAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAC57257.2022.10054924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the problem of the battery manufacturing capacity prediction, this paper presents a prediction method based on reinforcement learning network combination model. First, the combined model expression for the battery manufacturing capacity prediction is designed. Then, reinforcement learning is used to construct the hidden layer learning environment of recurrent neural network and long-short-termmemory network model, to obtain the optimal number of hidden layers, and then to construct the weight learning environment of the battery manufacturing capacity combination prediction model and a combined forecasting model of battery manufacturing capacity after iterative training. Finally, a case simulation on actual battery workshop data shows the effectiveness and practicability of the proposed algorithm on solving the battery manufacturing capacity prediction problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于强化学习网络组合模型的电池产能预测
针对电池产能预测问题,提出了一种基于强化学习网络组合模型的预测方法。首先,设计了电池制造能力预测的组合模型表达式。然后,利用强化学习构建递归神经网络和长短期记忆网络模型的隐层学习环境,获得最优隐层数,然后构建电池制造能力组合预测模型的权值学习环境和迭代训练后的电池制造能力组合预测模型。最后,通过对实际电池车间数据的实例仿真,验证了该算法在解决电池生产能力预测问题上的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Single Object Tracking in Satellite Videos with Meta-updater and Knowledge Distillation An improved event-trigger-based robust 6-DOF spacecraft formation control scheme under restricted communication Adaptive Neural Fixed-time Tracking Control of Underactuated USVs With External Disturbances Computer-Aided Diagnosis of COVID-19 with Joint Instance Segmentation and Classification Prescribed-Time Backstepping Algorithms for Leader-Follower Multi-Agent Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1