Classification of Leukemia using Fine Tuned VGG16

A. Abhishek, Sagar Deep Deb, R. K. Jha, R. Sinha, K. Jha
{"title":"Classification of Leukemia using Fine Tuned VGG16","authors":"A. Abhishek, Sagar Deep Deb, R. K. Jha, R. Sinha, K. Jha","doi":"10.1109/IConSCEPT57958.2023.10170285","DOIUrl":null,"url":null,"abstract":"Leukemia is a hematological disorder which affects the ability of the body to resist against diseases and infection. Early detection of the disease can play a vital role in the treatment of a patient. Computer aided detection system based on machine learning and deep learning algorithms can reduce the burden of doctors and the mortality rate due to leukemia. Transfer learning technique is frequently used in biomedical field due to unavailability of huge and well annotated dataset. The proposed work applies transfer learning to classify leukemia using 1358 microscopic images of blood smears. Pre-trained VGG16 is fine tuned on the leukemic dataset to classify an image as acute leukemia instance, chronic leukemia instance or a healthy instance with an accuracy of 93.01%.","PeriodicalId":240167,"journal":{"name":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IConSCEPT57958.2023.10170285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Leukemia is a hematological disorder which affects the ability of the body to resist against diseases and infection. Early detection of the disease can play a vital role in the treatment of a patient. Computer aided detection system based on machine learning and deep learning algorithms can reduce the burden of doctors and the mortality rate due to leukemia. Transfer learning technique is frequently used in biomedical field due to unavailability of huge and well annotated dataset. The proposed work applies transfer learning to classify leukemia using 1358 microscopic images of blood smears. Pre-trained VGG16 is fine tuned on the leukemic dataset to classify an image as acute leukemia instance, chronic leukemia instance or a healthy instance with an accuracy of 93.01%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
精细VGG16在白血病分类中的应用
白血病是一种血液系统疾病,它会影响人体抵抗疾病和感染的能力。疾病的早期发现对病人的治疗起着至关重要的作用。基于机器学习和深度学习算法的计算机辅助检测系统可以减轻医生的负担,降低白血病的死亡率。迁移学习技术在生物医学领域的应用非常广泛,这主要是由于缺乏大量且注释良好的数据集。提出的工作将迁移学习应用于使用1358张血液涂片显微图像对白血病进行分类。预先训练的VGG16在白血病数据集上进行微调,将图像分类为急性白血病、慢性白血病或健康病例,准确率为93.01%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three Port Full Bridge PFC Converter for Hybrid AC/DC/DC System with Fuzzy Logic Control ESH: A Non-Monotonic Activation Function For Image Classification Image Classification using Quantum Convolutional Neural Network Machine Learning Based Predictive Model for Intrusion Detection EV Sahayak: Android Assistance App for Electric Vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1