Enhancing Optical Cross-Sensor Fingerprint Matching Using Local Textural Features

Emanuela Marasco, Alex Feldman, Keleigh Rachel Romine
{"title":"Enhancing Optical Cross-Sensor Fingerprint Matching Using Local Textural Features","authors":"Emanuela Marasco, Alex Feldman, Keleigh Rachel Romine","doi":"10.1109/WACVW.2018.00010","DOIUrl":null,"url":null,"abstract":"Fingerprint systems have been designed to typically operate on images acquired using the same sensor. Existing fingerprint systems are not able to accurately compare images collected using different sensors. In this paper, we propose a learning-based scheme for enhancing interoperability between optical fingerprint sensors by compensating the output of a traditional commercial matcher. Specifically, cross-sensor differences are captured by incorporating Local Binary Patterns (LBP) and Local Phase Quantization (LPQ), while dimensionality reduction is performed by using Reconstruction Independent Component Analysis (RICA). The evaluation is carried out on rolled fingerprints pertaining to 494 users collected atWest Virginia University and acquired using multiple optical sensors and Ten Print cards. In cross-sensor at False Acceptance Rate of 0.01%, the proposed approach achieves a False Rejection Rate of 4.12%.","PeriodicalId":301220,"journal":{"name":"2018 IEEE Winter Applications of Computer Vision Workshops (WACVW)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Winter Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW.2018.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Fingerprint systems have been designed to typically operate on images acquired using the same sensor. Existing fingerprint systems are not able to accurately compare images collected using different sensors. In this paper, we propose a learning-based scheme for enhancing interoperability between optical fingerprint sensors by compensating the output of a traditional commercial matcher. Specifically, cross-sensor differences are captured by incorporating Local Binary Patterns (LBP) and Local Phase Quantization (LPQ), while dimensionality reduction is performed by using Reconstruction Independent Component Analysis (RICA). The evaluation is carried out on rolled fingerprints pertaining to 494 users collected atWest Virginia University and acquired using multiple optical sensors and Ten Print cards. In cross-sensor at False Acceptance Rate of 0.01%, the proposed approach achieves a False Rejection Rate of 4.12%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用局部纹理特征增强光学指纹匹配
指纹系统通常被设计为对使用相同传感器获取的图像进行操作。现有的指纹系统不能准确地比较使用不同传感器收集的图像。在本文中,我们提出了一种基于学习的方案,通过补偿传统商用匹配器的输出来增强光学指纹传感器之间的互操作性。具体来说,通过结合局部二值模式(LBP)和局部相位量化(LPQ)来捕获传感器间的差异,而通过重建独立分量分析(RICA)来进行降维。这项评估是对西弗吉尼亚大学收集的494名用户的卷指纹进行的,这些指纹是通过多个光学传感器和Ten Print卡获得的。在误接受率为0.01%的交叉传感器情况下,该方法的误拒率为4.12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Calorific Expenditure Estimation Using Deep Convolutional Network Features Evaluating a Convolutional Neural Network on Short-Wave Infra-Red Images Facial Attributes Guided Deep Sketch-to-Photo Synthesis Learning Visual Engagement for Trauma Recovery A Multi-task Convolutional Neural Network for Joint Iris Detection and Presentation Attack Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1