An FPGA-based Parallel Hardware Architecture for Real-Time Face Detection Using a Face Certainty Map

S. Jin, Dongkyun Kim, T. Nguyen, Bongjin Jun, Daijin Kim, J. Jeon
{"title":"An FPGA-based Parallel Hardware Architecture for Real-Time Face Detection Using a Face Certainty Map","authors":"S. Jin, Dongkyun Kim, T. Nguyen, Bongjin Jun, Daijin Kim, J. Jeon","doi":"10.1109/ASAP.2009.36","DOIUrl":null,"url":null,"abstract":"This paper presents an FPGA-based parallel hardware architecture for real-time face detection. An image pyramid with twenty depth levels is generated using the input image. For these scaled-down images, a local binary pattern transform and feature evaluation are performed in parallel by using the proposed block RAM-based window processing architecture. By sharing the feature look-up tables between two corresponding scaled-down images, we can reduce the use of routing resources by half. For prototyping and evaluation purposes, the hardware architecture was integrated into a Virtex-5 FPGA. The experimental result shows around 300 frames per second speed performance for processing standard VGA (640×480×8) images. In addition, the throughput of the implementation can be adjusted in proportion to the frame rate of the camera, by synchronizing each individual module with the pixel sampling clock.","PeriodicalId":202421,"journal":{"name":"2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2009.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper presents an FPGA-based parallel hardware architecture for real-time face detection. An image pyramid with twenty depth levels is generated using the input image. For these scaled-down images, a local binary pattern transform and feature evaluation are performed in parallel by using the proposed block RAM-based window processing architecture. By sharing the feature look-up tables between two corresponding scaled-down images, we can reduce the use of routing resources by half. For prototyping and evaluation purposes, the hardware architecture was integrated into a Virtex-5 FPGA. The experimental result shows around 300 frames per second speed performance for processing standard VGA (640×480×8) images. In addition, the throughput of the implementation can be adjusted in proportion to the frame rate of the camera, by synchronizing each individual module with the pixel sampling clock.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于fpga的并行硬件结构,用于人脸确定性地图的实时人脸检测
提出了一种基于fpga的实时人脸检测并行硬件结构。使用输入图像生成具有20个深度级别的图像金字塔。对于这些缩小后的图像,采用所提出的基于块ram的窗口处理架构并行进行局部二值模式变换和特征评估。通过在两个相应的按比例缩小的图像之间共享特征查找表,我们可以将路由资源的使用减少一半。为了原型和评估的目的,硬件架构被集成到一个Virtex-5 FPGA中。实验结果显示,处理标准VGA (640×480×8)图像的速度约为每秒300帧。此外,通过将每个单独的模块与像素采样时钟同步,可以根据相机的帧速率按比例调整实现的吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Implementation of Carry-Save Adders in FPGAs Evaluating Various Branch-Prediction Schemes for Biomedical-Implant Processors A Combined Decimal and Binary Floating-Point Multiplier Integral Parallel Architecture & Berkeley's Motifs NeMo: A Platform for Neural Modelling of Spiking Neurons Using GPUs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1