Yue Zhao, Xiaoming Liu, Junnan Chen, M. Kojima, Qiang Huang, T. Arai
{"title":"Teleoperation of Dexterous Micro-Nano Hand with Haptic Devices","authors":"Yue Zhao, Xiaoming Liu, Junnan Chen, M. Kojima, Qiang Huang, T. Arai","doi":"10.1109/RCAR54675.2022.9872241","DOIUrl":null,"url":null,"abstract":"Micro-nano operation refers to the high-precision operation of the target on the micro-nano scale. It is widely used in the assembly of small devices, single-cell manipulation and analysis, and cell assembly in tissue engineering. At present, many micro-operations mainly rely on traditional manual operations, which have poor accuracy, low efficiency and low controllability. In this paper, a teleoperation system composed of a three-degree-of-freedom parallel micro-nano manipulator driven by piezoelectric ceramics and the 3D Systems’ Touch haptic device is designed. The system has the characteristics of small size, high precision, fast speed, and convenient operation. It can greatly reduce the technical threshold of the operator and make it more intuitive and efficient to complete the micro-nano operation task, which has a great market prospect.","PeriodicalId":304963,"journal":{"name":"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCAR54675.2022.9872241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Micro-nano operation refers to the high-precision operation of the target on the micro-nano scale. It is widely used in the assembly of small devices, single-cell manipulation and analysis, and cell assembly in tissue engineering. At present, many micro-operations mainly rely on traditional manual operations, which have poor accuracy, low efficiency and low controllability. In this paper, a teleoperation system composed of a three-degree-of-freedom parallel micro-nano manipulator driven by piezoelectric ceramics and the 3D Systems’ Touch haptic device is designed. The system has the characteristics of small size, high precision, fast speed, and convenient operation. It can greatly reduce the technical threshold of the operator and make it more intuitive and efficient to complete the micro-nano operation task, which has a great market prospect.