Modelizing a non-linear system: a computational effcient adaptive neuro-fuzzy system tool based on matlab

G. Bosque, del Campo, J. Echanobe
{"title":"Modelizing a non-linear system: a computational effcient adaptive neuro-fuzzy system tool based on matlab","authors":"G. Bosque, del Campo, J. Echanobe","doi":"10.14419/JACST.V3I1.2138","DOIUrl":null,"url":null,"abstract":"In a great diversity of knowledge areas, the variables that are involved in the behavior of a complex system, perform normally, a non-linear system. The search of a function that express those behavior, requires techniques as mathematics optimization techniques or others. The new paradigms introduced in the soft computing, as fuzzy logic, neuronal networks, genetics algorithms and the fusion of them like the neuro-fuzzy systems, and so on, represent a new point of view to deal this kind of problems due to the approximation properties of those systems (universal approximators). This work shows a methodology to develop a tool based on a neuro-fuzzy system of ANFIS (Adaptive Neuro-Fuzzy Inference System) type with piecewise multilinear (PWM) behaviour (introducing some restrictions on the membership functions -triangular- chosen in the ANFIS system). The obtained tool is named PWM-ANFIS Tool, that allows modelize a n-dimensional system with one output and, also, permits a comparison between the neuro-fuzzy system modelized, a purely PWM-ANFIS model, with a generic ANFIS (Gaussian membership functions) modelized with the same tool. The proposed tool is an efficient tool to deal non-linearly complicated systems. Keywords: ANFIS model, Function approximation, Matlab environment, Neuro-Fuzzy CAD tool, Neuro-Fuzzy modelling.","PeriodicalId":445404,"journal":{"name":"Journal of Advanced Computer Science and Technology","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computer Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/JACST.V3I1.2138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a great diversity of knowledge areas, the variables that are involved in the behavior of a complex system, perform normally, a non-linear system. The search of a function that express those behavior, requires techniques as mathematics optimization techniques or others. The new paradigms introduced in the soft computing, as fuzzy logic, neuronal networks, genetics algorithms and the fusion of them like the neuro-fuzzy systems, and so on, represent a new point of view to deal this kind of problems due to the approximation properties of those systems (universal approximators). This work shows a methodology to develop a tool based on a neuro-fuzzy system of ANFIS (Adaptive Neuro-Fuzzy Inference System) type with piecewise multilinear (PWM) behaviour (introducing some restrictions on the membership functions -triangular- chosen in the ANFIS system). The obtained tool is named PWM-ANFIS Tool, that allows modelize a n-dimensional system with one output and, also, permits a comparison between the neuro-fuzzy system modelized, a purely PWM-ANFIS model, with a generic ANFIS (Gaussian membership functions) modelized with the same tool. The proposed tool is an efficient tool to deal non-linearly complicated systems. Keywords: ANFIS model, Function approximation, Matlab environment, Neuro-Fuzzy CAD tool, Neuro-Fuzzy modelling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性系统建模:基于matlab的高效自适应神经模糊系统工具
在多种多样的知识领域中,涉及复杂系统行为的变量通常表现为非线性系统。寻找表达这些行为的函数需要数学优化技术或其他技术。软计算中引入的新范式,如模糊逻辑、神经网络、遗传算法以及它们的融合如神经模糊系统等,由于这些系统的近似性质(全称近似器),代表了处理这类问题的新视角。这项工作展示了一种开发工具的方法,该工具基于具有分段多线性(PWM)行为的ANFIS(自适应神经模糊推理系统)类型的神经模糊系统(引入了对ANFIS系统中选择的三角隶属函数的一些限制)。所获得的工具被命名为PWM-ANFIS工具,它允许建模一个具有一个输出的n维系统,并且还允许将神经模糊系统建模,纯PWM-ANFIS模型与使用同一工具建模的通用ANFIS(高斯隶属函数)进行比较。该工具是处理非线性复杂系统的有效工具。关键词:ANFIS模型,函数逼近,Matlab环境,神经模糊CAD工具,神经模糊建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating the performance of machine learning algorithms for network intrusion detection systems in the internet of things infrastructure Geometric Approach to Optimal Path Problem with Uncertain Arc Lengths Statistical adjustment of the parameters of multi-objective optimization problems with design expert method Circular Gabor wavelet algorithm for fingerprint liveness detection Numerical analysis of transcritical carbon dioxide compression cycle: a case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1