Decoding fingerprints using the Markov Chain Monte Carlo method

T. Furon, A. Guyader, F. Cérou
{"title":"Decoding fingerprints using the Markov Chain Monte Carlo method","authors":"T. Furon, A. Guyader, F. Cérou","doi":"10.1109/WIFS.2012.6412647","DOIUrl":null,"url":null,"abstract":"This paper proposes a new fingerprinting decoder based on the Markov Chain Monte Carlo (MCMC) method. A Gibbs sampler generates groups of users according to the posterior probability that these users could have forged the sequence extracted from the pirated content. The marginal probability that a given user pertains to the collusion is then estimated by a Monte Carlo method. The users having the biggest empirical marginal probabilities are accused. This MCMC method can decode any type of fingerprinting codes. This paper is in the spirit of the `Learn and Match' decoding strategy: it assumes that the collusion attack belongs to a family of models. The Expectation-Maximization algorithm estimates the parameters of the collusion model from the extracted sequence. This part of the algorithm is described for the binary Tardos code and with the exploitation of the soft outputs of the watermarking decoder. The experimental body considers some extreme setups where the fingerprinting code lengths are very small. It reveals that the weak link of our approach is the estimation part. This is a clear warning to the `Learn and Match' decoding strategy.","PeriodicalId":396789,"journal":{"name":"2012 IEEE International Workshop on Information Forensics and Security (WIFS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS.2012.6412647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper proposes a new fingerprinting decoder based on the Markov Chain Monte Carlo (MCMC) method. A Gibbs sampler generates groups of users according to the posterior probability that these users could have forged the sequence extracted from the pirated content. The marginal probability that a given user pertains to the collusion is then estimated by a Monte Carlo method. The users having the biggest empirical marginal probabilities are accused. This MCMC method can decode any type of fingerprinting codes. This paper is in the spirit of the `Learn and Match' decoding strategy: it assumes that the collusion attack belongs to a family of models. The Expectation-Maximization algorithm estimates the parameters of the collusion model from the extracted sequence. This part of the algorithm is described for the binary Tardos code and with the exploitation of the soft outputs of the watermarking decoder. The experimental body considers some extreme setups where the fingerprinting code lengths are very small. It reveals that the weak link of our approach is the estimation part. This is a clear warning to the `Learn and Match' decoding strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解码指纹使用马尔可夫链蒙特卡罗方法
提出了一种基于马尔可夫链蒙特卡罗(MCMC)方法的指纹解码器。Gibbs采样器根据这些用户可能伪造从盗版内容中提取的序列的后验概率生成用户组。然后用蒙特卡罗方法估计给定用户属于串通的边际概率。具有最大经验边际概率的用户受到指责。这种MCMC方法可以解码任何类型的指纹码。本文本着“学习和匹配”解码策略的精神:它假设共谋攻击属于一类模型。期望最大化算法从提取的序列中估计合谋模型的参数。该部分描述了针对二进制Tardos码的算法,并利用了水印解码器的软输出。实验机构考虑了一些极端的设置,其中指纹码长度非常小。这表明我们的方法的薄弱环节是估计部分。这是对“学习和匹配”解码策略的一个明确警告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing steganographic distortion using directional filters AC-3 bit stream watermarking Privacy-preserving architecture for forensic image recognition Active content fingerprinting: A marriage of digital watermarking and content fingerprinting Optimum forensic and counter-forensic strategies for source identification with training data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1