Anisotropic diffusion processes in early vision

Pietro Perona
{"title":"Anisotropic diffusion processes in early vision","authors":"Pietro Perona","doi":"10.1109/MDSP.1989.97028","DOIUrl":null,"url":null,"abstract":"Summary form only given. Images often contain information at a number of different scales of resolution, so that the definition and generation of a good scale space is a key step in early vision. A scale space in which object boundaries are respected and smoothing only takes place within these boundaries has been defined that avoids the inaccuracies introduced by the usual method of low-pass-filtering the image with Gaussian kernels. The new scale space is generated by solving a nonlinear diffusion differential equation forward in time (the scale parameter). The original image is used as the initial condition, and the conduction coefficient c(x, y, t) varies in space and scale as a function of the gradient of the variable of interest (e.g. the image brightness). The algorithms are based on comparing the local values of different diffusion processes running in parallel on the same image.<<ETX>>","PeriodicalId":340681,"journal":{"name":"Sixth Multidimensional Signal Processing Workshop,","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth Multidimensional Signal Processing Workshop,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDSP.1989.97028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Summary form only given. Images often contain information at a number of different scales of resolution, so that the definition and generation of a good scale space is a key step in early vision. A scale space in which object boundaries are respected and smoothing only takes place within these boundaries has been defined that avoids the inaccuracies introduced by the usual method of low-pass-filtering the image with Gaussian kernels. The new scale space is generated by solving a nonlinear diffusion differential equation forward in time (the scale parameter). The original image is used as the initial condition, and the conduction coefficient c(x, y, t) varies in space and scale as a function of the gradient of the variable of interest (e.g. the image brightness). The algorithms are based on comparing the local values of different diffusion processes running in parallel on the same image.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
早期视力的各向异性扩散过程
只提供摘要形式。图像通常包含多个不同分辨率尺度的信息,因此良好尺度空间的定义和生成是早期视觉的关键步骤。我们定义了一个尺度空间,在这个尺度空间中,物体边界被尊重,平滑只在这些边界内发生,从而避免了通常使用高斯核对图像进行低通滤波的方法所带来的不准确性。新的尺度空间是通过对非线性扩散微分方程(尺度参数)进行时间正向求解而得到的。以原始图像作为初始条件,传导系数c(x, y, t)随感兴趣变量(如图像亮度)的梯度在空间和尺度上变化。该算法基于对同一图像上并行运行的不同扩散过程的局部值进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A filtering approach to the two-dimensional volume conductor forward and inverse problems A cross-correlation approach to astronomical speckle imaging A new robust method for 2-D sinusoidal frequency estimation Fast progressive reconstruction of a transformed image by the Hartley method Adaptive filter for processing of multichannel nonstationary seismic data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1