Using statistical parameters for chaos detection

K. Vibe-Rheymer, J. Vesin
{"title":"Using statistical parameters for chaos detection","authors":"K. Vibe-Rheymer, J. Vesin","doi":"10.1109/DSPWS.1996.555574","DOIUrl":null,"url":null,"abstract":"Detecting chaos in experimental data is a nontrivial problem. Nowadays, most techniques require long data sets and a low amount of noise in the data, which is not always possible. Besides, the results often leave much room to interpretation. The paper proposes an alternative to classical methods, using statistical techniques. The chaos detection test is decomposed into two sub-tests, detecting respectively the presence of fractality and nonlinearity in the signal. Several possible tests for each feature are presented and analyzed; the best combination test is then proposed.","PeriodicalId":131323,"journal":{"name":"1996 IEEE Digital Signal Processing Workshop Proceedings","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 IEEE Digital Signal Processing Workshop Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSPWS.1996.555574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Detecting chaos in experimental data is a nontrivial problem. Nowadays, most techniques require long data sets and a low amount of noise in the data, which is not always possible. Besides, the results often leave much room to interpretation. The paper proposes an alternative to classical methods, using statistical techniques. The chaos detection test is decomposed into two sub-tests, detecting respectively the presence of fractality and nonlinearity in the signal. Several possible tests for each feature are presented and analyzed; the best combination test is then proposed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用统计参数进行混沌检测
检测实验数据中的混沌是一个非常重要的问题。如今,大多数技术需要较长的数据集和较低的数据噪声,这并不总是可能的。此外,结果往往留有很大的解释空间。本文提出了一种替代经典方法的方法,即使用统计技术。混沌检测测试分为两个子测试,分别检测信号中是否存在分形和非线性。提出并分析了每个特征的几种可能的测试;然后提出了最佳组合试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multirate modeling of human ear frequency resolution for hearing aids An OFDM spread spectrum system using lapped transforms and partial band interference suppression Spectral extrapolation in sub-band coding Memory efficient list based Hough transform for programmable digital signal processors with on-chip caches Towards a system for segmentation under noisy conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1