Understanding customer behaviour in urban shopping mall from WiFi logs

Yuanyi Chen, Jinyu Zhang, M. Guo, Jiannong Cao
{"title":"Understanding customer behaviour in urban shopping mall from WiFi logs","authors":"Yuanyi Chen, Jinyu Zhang, M. Guo, Jiannong Cao","doi":"10.1109/PERCOMW.2017.7917519","DOIUrl":null,"url":null,"abstract":"Traditional ways of understanding customer behaviour are mainly based on predominantly field surveys, which are not effective as they require labor-intensive survey. As mobile devices and ubiquitous sensing technologies are becoming more and more pervasive, user-generated data from these platforms are providing rich information to uncover customer preference. In this study, we propose a shop recommendation model for urban shopping mall by exploiting user-generated WiFi logs to learn customer preference. Specifically, the proposed model consists of two phases: 1) offline learning customer's preference from their check-in activities; 2) online recommendation by fusing the learnt preference and temporal influence. We have performed a comprehensive experiment evaluation on a real dataset collected by over 39,000 customers during 7 months, and the experiment results show the proposed recommendation model outperforms state-of-the-art methods.","PeriodicalId":319638,"journal":{"name":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2017.7917519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Traditional ways of understanding customer behaviour are mainly based on predominantly field surveys, which are not effective as they require labor-intensive survey. As mobile devices and ubiquitous sensing technologies are becoming more and more pervasive, user-generated data from these platforms are providing rich information to uncover customer preference. In this study, we propose a shop recommendation model for urban shopping mall by exploiting user-generated WiFi logs to learn customer preference. Specifically, the proposed model consists of two phases: 1) offline learning customer's preference from their check-in activities; 2) online recommendation by fusing the learnt preference and temporal influence. We have performed a comprehensive experiment evaluation on a real dataset collected by over 39,000 customers during 7 months, and the experiment results show the proposed recommendation model outperforms state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过WiFi日志了解城市购物中心的顾客行为
了解客户行为的传统方法主要是基于主要的实地调查,这是无效的,因为他们需要劳动密集型的调查。随着移动设备和无处不在的传感技术变得越来越普遍,来自这些平台的用户生成数据为揭示客户偏好提供了丰富的信息。在本研究中,我们提出了一个城市购物中心的店铺推荐模型,利用用户生成的WiFi日志来学习顾客偏好。具体来说,所提出的模型包括两个阶段:1)离线从客户的签到活动中学习客户的偏好;2)融合学习偏好和时间影响的在线推荐。我们在7个月的时间里对超过39,000个客户收集的真实数据集进行了全面的实验评估,实验结果表明所提出的推荐模型优于目前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensitivity to web hosting in a mobile field survey NFC based dataset annotation within a behavioral alerting platform An aggregation and visualization technique for crowd-sourced continuous monitoring of transport infrastructures Trainwear: A real-time assisted training feedback system with fabric wearable sensors Toward real-time in-home activity recognition using indoor positioning sensor and power meters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1