Can a “poor” verification system be a “good” identification system? A preliminary study

Brian DeCann, A. Ross
{"title":"Can a “poor” verification system be a “good” identification system? A preliminary study","authors":"Brian DeCann, A. Ross","doi":"10.1109/WIFS.2012.6412621","DOIUrl":null,"url":null,"abstract":"The matching accuracy of a biometric system is typically quantified through measures such as the False Match Rate (FMR), False Non-match Rate (FNMR), Equal Error Rate (EER), Receiver Operating Characteristic (ROC) curve and Cumulative Match Characteristic (CMC) curve. In this work, we analyze the relationship between the ROC and CMC curves, which are two measures commonly used to describe the performance of verification and identification systems, respectively. We establish that it is possible for a biometric system to exhibit “good” verification performance and “poor” identification performance (and vice versa) by demonstrating the conditions required to produce such outcomes. Experimental analysis using synthetically generated match scores confirms our hypothesis that the ROC or CMC alone cannot completely characterize biometric system performance.","PeriodicalId":396789,"journal":{"name":"2012 IEEE International Workshop on Information Forensics and Security (WIFS)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS.2012.6412621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

The matching accuracy of a biometric system is typically quantified through measures such as the False Match Rate (FMR), False Non-match Rate (FNMR), Equal Error Rate (EER), Receiver Operating Characteristic (ROC) curve and Cumulative Match Characteristic (CMC) curve. In this work, we analyze the relationship between the ROC and CMC curves, which are two measures commonly used to describe the performance of verification and identification systems, respectively. We establish that it is possible for a biometric system to exhibit “good” verification performance and “poor” identification performance (and vice versa) by demonstrating the conditions required to produce such outcomes. Experimental analysis using synthetically generated match scores confirms our hypothesis that the ROC or CMC alone cannot completely characterize biometric system performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个“差”的验证系统能成为一个“好的”识别系统吗?初步研究
生物识别系统的匹配精度通常通过诸如错误匹配率(FMR)、错误不匹配率(FNMR)、等错误率(EER)、接收者工作特征(ROC)曲线和累积匹配特征(CMC)曲线等测量来量化。在这项工作中,我们分析了ROC曲线和CMC曲线之间的关系,这两个曲线分别是常用来描述验证和识别系统性能的两个指标。我们通过演示产生此类结果所需的条件,确定生物识别系统有可能表现出“良好”的验证性能和“差”的识别性能(反之亦然)。使用合成匹配分数的实验分析证实了我们的假设,即ROC或CMC本身不能完全表征生物识别系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing steganographic distortion using directional filters AC-3 bit stream watermarking Privacy-preserving architecture for forensic image recognition Active content fingerprinting: A marriage of digital watermarking and content fingerprinting Optimum forensic and counter-forensic strategies for source identification with training data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1