Functional Electrical Stimulation Capability Maps

Eric M. Schearer, D. Wolf
{"title":"Functional Electrical Stimulation Capability Maps","authors":"Eric M. Schearer, D. Wolf","doi":"10.1109/NER.2019.8717134","DOIUrl":null,"url":null,"abstract":"We introduce capability maps visualizing the abilities of the arm of a person with a cervical spinal cord injury activated by functional electrical stimulation (FES). We map the arm’s workspace at different wrist positions using a person-specific arm model based on force data gathered during interactions with a robot. We describe four maps: 1) a map of the maximum force the person can produce in one direction, 2) a map of wrist configurations that FES can hold against gravity and other passive forces, 3) a map of the maximum force the person can apply in all directions, and 4) a map of the directions the arm can move with FES. To demonstrate these maps we applied electrical stimulation to nine muscle groups of a person with high tetraplegia, measured the resulting force with a robot attached to the person’s wrist, created a Gaussian process regression model relating the forces to the wrist positions, and used this model to create the four capability maps. The results are 2D images displaying the arm’s force production and movement capabilities for a person with high tetraplegia as a function of wrist position. As these maps predict functional benefits of specific interventions, they can reduce risk in developing new interventions to restore function to people with whole-arm paralysis.","PeriodicalId":356177,"journal":{"name":"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2019.8717134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce capability maps visualizing the abilities of the arm of a person with a cervical spinal cord injury activated by functional electrical stimulation (FES). We map the arm’s workspace at different wrist positions using a person-specific arm model based on force data gathered during interactions with a robot. We describe four maps: 1) a map of the maximum force the person can produce in one direction, 2) a map of wrist configurations that FES can hold against gravity and other passive forces, 3) a map of the maximum force the person can apply in all directions, and 4) a map of the directions the arm can move with FES. To demonstrate these maps we applied electrical stimulation to nine muscle groups of a person with high tetraplegia, measured the resulting force with a robot attached to the person’s wrist, created a Gaussian process regression model relating the forces to the wrist positions, and used this model to create the four capability maps. The results are 2D images displaying the arm’s force production and movement capabilities for a person with high tetraplegia as a function of wrist position. As these maps predict functional benefits of specific interventions, they can reduce risk in developing new interventions to restore function to people with whole-arm paralysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
功能性电刺激能力图
我们介绍了通过功能性电刺激(FES)激活的颈脊髓损伤患者手臂能力可视化的能力图。我们使用基于与机器人交互过程中收集的力数据的个人特定手臂模型来绘制手臂在不同手腕位置的工作空间。我们描述了四个地图:1)一个人可以在一个方向上产生的最大力的地图,2)FES可以抵抗重力和其他被动力的手腕结构的地图,3)一个人可以在所有方向上施加的最大力的地图,以及4)一个手臂可以用FES移动的方向的地图。为了展示这些地图,我们对一个四肢瘫痪的人的九个肌肉群进行了电刺激,用一个附着在这个人手腕上的机器人测量了产生的力,创建了一个高斯过程回归模型,将力与手腕位置联系起来,并用这个模型创建了四个能力地图。结果是2D图像,显示了高度四肢瘫痪者的手臂的力量产生和运动能力,作为手腕位置的函数。由于这些地图预测了特定干预措施的功能益处,它们可以降低开发新的干预措施以恢复全臂瘫痪患者功能的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Activating a 2×2 Network of hNT Astrocytes with UV Laser Stimulation Investigation of Insertion Method to Achieve Chronic Recording Stability of a Semi-Rigid Implantable Neural Probe Assistive Robot Arm Controlled by a P300-based Brain Machine Interface for Daily Activities Single Cell Grid Networks of Human Astrocytes On Chip Modulation of neuronal input-output function by subthreshold electric fields from dendritic sublinear integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1