Twitter Sentiment Analysis of Indonesian Airlines Using LSTM

Benedictus Prabaswara, Wanda Safira, Kartika Purwandari, F. Kurniadi
{"title":"Twitter Sentiment Analysis of Indonesian Airlines Using LSTM","authors":"Benedictus Prabaswara, Wanda Safira, Kartika Purwandari, F. Kurniadi","doi":"10.1109/IoTaIS56727.2022.9975946","DOIUrl":null,"url":null,"abstract":"Twitter is one of the social media that is currently a trend, where Twitter users can tweet as freely as possible about their opinions and even those opinions about airlines in Indonesia. Twitter sentiment analysis is a process to identify whether tweets on Twitter are included as positive tweets or negative tweets. In this research, the tweets will be divided into three categories: positive, neutral, and negative, using Lexicon and Long Short-Term Memory (LSTM). The data taken are tweets from Twitter in the form of text. One hundred positive, one hundred neutral, and one hundred negative tweets were taken. After going through the process using the Lexicon and LSTM method, the results obtained are 73% accuracy, where there are 130 positive tweets, 105 negative tweets, and 62 neutral tweets.","PeriodicalId":138894,"journal":{"name":"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)","volume":"2003 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IoTaIS56727.2022.9975946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Twitter is one of the social media that is currently a trend, where Twitter users can tweet as freely as possible about their opinions and even those opinions about airlines in Indonesia. Twitter sentiment analysis is a process to identify whether tweets on Twitter are included as positive tweets or negative tweets. In this research, the tweets will be divided into three categories: positive, neutral, and negative, using Lexicon and Long Short-Term Memory (LSTM). The data taken are tweets from Twitter in the form of text. One hundred positive, one hundred neutral, and one hundred negative tweets were taken. After going through the process using the Lexicon and LSTM method, the results obtained are 73% accuracy, where there are 130 positive tweets, 105 negative tweets, and 62 neutral tweets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LSTM的印尼航空公司Twitter情绪分析
Twitter是目前一种趋势的社交媒体,Twitter用户可以尽可能自由地发布自己的观点,甚至是对印尼航空公司的观点。Twitter情绪分析是识别Twitter上的推文是积极推文还是消极推文的过程。在本研究中,将使用Lexicon和长短期记忆(LSTM)将推文分为积极、中性和消极三类。所获取的数据是Twitter上以文本形式发布的推文。100条正面推文,100条中性推文和100条负面推文。使用Lexicon和LSTM方法进行处理后,得到的结果准确率为73%,其中正面推文130条,负面推文105条,中性推文62条。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Selecting Resource-Efficient ML Models for Transport Mode Detection on Mobile Devices A Two-Step Machine Learning Model for Stage-Specific Disease Survivability Prediction Comparing Analog and Digital Processing for Ultra Low-Power Embedded Artificial Intelligence Channel Estimation in Cellular Massive MIMO: A Data-Driven Approach A proposal on the control mechanism among distributed MQTT brokers over wide area networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1