Waypoint-based Topology Inference

Yilei Lin, T. He, Shiqiang Wang, Kevin S. Chan
{"title":"Waypoint-based Topology Inference","authors":"Yilei Lin, T. He, Shiqiang Wang, Kevin S. Chan","doi":"10.1109/ICC40277.2020.9149348","DOIUrl":null,"url":null,"abstract":"Traditional network topology inference aims at reconstructing the routing trees rooted at each probing source from end-to-end measurements. However, due to emerging technologies such as network function virtualization, software defined networking, and segment routing, many modern networks are capable of supporting generalized forwarding that can create complex routing topologies different from routing trees. In this work, we take a first step towards closing this gap by proposing methods to infer the routing topology (referred to as 1-1-N topology) from a single source to multiple destinations, where routes may be required to traverse a given waypoint. We first thoroughly study the special case of 1-1-2 topologies, showing that even this seemingly simple case is highly nontrivial with 36 possibilities. We then demonstrate how the solution to the special case can be used as building blocks to infer 1-1-N topologies. The inferred topology is proved to be equivalent to the ground truth up to splitting/combining edges in the same category.","PeriodicalId":106560,"journal":{"name":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC40277.2020.9149348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional network topology inference aims at reconstructing the routing trees rooted at each probing source from end-to-end measurements. However, due to emerging technologies such as network function virtualization, software defined networking, and segment routing, many modern networks are capable of supporting generalized forwarding that can create complex routing topologies different from routing trees. In this work, we take a first step towards closing this gap by proposing methods to infer the routing topology (referred to as 1-1-N topology) from a single source to multiple destinations, where routes may be required to traverse a given waypoint. We first thoroughly study the special case of 1-1-2 topologies, showing that even this seemingly simple case is highly nontrivial with 36 possibilities. We then demonstrate how the solution to the special case can be used as building blocks to infer 1-1-N topologies. The inferred topology is proved to be equivalent to the ground truth up to splitting/combining edges in the same category.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于路径点的拓扑推断
传统的网络拓扑推理旨在从端到端测量中重构基于每个探测源的路由树。然而,由于网络功能虚拟化、软件定义网络和段路由等新兴技术的出现,许多现代网络都能够支持广义转发,从而创建不同于路由树的复杂路由拓扑。在这项工作中,我们通过提出从单个源到多个目的地推断路由拓扑(称为1-1-N拓扑)的方法,迈出了缩小这一差距的第一步,其中路由可能需要遍历给定的路点。我们首先深入研究了1-1-2拓扑的特殊情况,表明即使这种看似简单的情况也具有36种可能性。然后,我们将演示如何将特殊情况的解决方案用作推断1-1-N拓扑的构建块。证明了所推导的拓扑等价于在同一范畴内分割/合并边的基本真理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Full Duplex MIMO Digital Beamforming with Reduced Complexity AUXTX Analog Cancellation Cognitive Management and Control of Optical Networks in Dynamic Environments Offloading Media Traffic to Programmable Data Plane Switches Simultaneous Transmitting and Air Computing for High-Speed Point-to-Point Wireless Communication A YouTube Dataset with User-level Usage Data: Baseline Characteristics and Key Insights
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1