R. Mudumbai, J. Hespanha, Upamanyu Madhow, G. Barriac
{"title":"Scalable feedback control for distributed beamforming in sensor networks","authors":"R. Mudumbai, J. Hespanha, Upamanyu Madhow, G. Barriac","doi":"10.1109/ISIT.2005.1523309","DOIUrl":null,"url":null,"abstract":"Recent work has shown that large gains in communication capacity are achievable by distributed beamforming in sensor networks. The principal challenge in realizing these gains in practice, is in synchronizing the carrier signal of individual sensors in such a way that they combine coherently at the intended receiver. In this paper, we provide a scalable mechanism for achieving phase synchronization in completely distributed fashion, based only on feedback regarding the power of the net received signal. Insight into the workings of the protocol is obtained from a simple theoretical model that provides accurate performance estimates","PeriodicalId":166130,"journal":{"name":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"171","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2005.1523309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 171
Abstract
Recent work has shown that large gains in communication capacity are achievable by distributed beamforming in sensor networks. The principal challenge in realizing these gains in practice, is in synchronizing the carrier signal of individual sensors in such a way that they combine coherently at the intended receiver. In this paper, we provide a scalable mechanism for achieving phase synchronization in completely distributed fashion, based only on feedback regarding the power of the net received signal. Insight into the workings of the protocol is obtained from a simple theoretical model that provides accurate performance estimates