Alzheimer's disease detection using a Self-adaptive Resource Allocation Network classifier

B. S. Mahanand, S. Sundaram, N. Sundararajan, M. A. Kumar
{"title":"Alzheimer's disease detection using a Self-adaptive Resource Allocation Network classifier","authors":"B. S. Mahanand, S. Sundaram, N. Sundararajan, M. A. Kumar","doi":"10.1109/IJCNN.2011.6033460","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach using Voxel-Based Morphometry (VBM) detected features with a Self-adaptive Resource Allocation Network (SRAN) classifier for the detection of Alzheimer's Disease (AD) from Magnetic Resonance Imaging (MRI) scans. For feature reduction, Principal Component Analysis (PCA) has been performed on the morphometric features obtained from the VBM analysis and these reduced features are then used as input to the SRAN classifier. In our study, the MRI volumes of 30 ‘mild AD to moderate AD’ patients and 30 normal persons from the well-known Open Access Series of Imaging Studies (OASIS) data set have been used. The results indicate that the SRAN classifier produces a mean testing efficiency of 91.18% with only 20 PCA reduced features whereas, the Support Vector Machine (SVM) produces a mean testing efficiency of 90.57% using 45 PCA reduced features. Also, the results show that the SRAN classifier avoids over-training by minimizing the number of samples used for training and provides a better generalization performance compared to the SVM classifier. The study clearly indicates that our proposed approach of PCA-SRAN classifier performs accurate classification of AD subjects using reduced morphometric features.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

This paper presents a new approach using Voxel-Based Morphometry (VBM) detected features with a Self-adaptive Resource Allocation Network (SRAN) classifier for the detection of Alzheimer's Disease (AD) from Magnetic Resonance Imaging (MRI) scans. For feature reduction, Principal Component Analysis (PCA) has been performed on the morphometric features obtained from the VBM analysis and these reduced features are then used as input to the SRAN classifier. In our study, the MRI volumes of 30 ‘mild AD to moderate AD’ patients and 30 normal persons from the well-known Open Access Series of Imaging Studies (OASIS) data set have been used. The results indicate that the SRAN classifier produces a mean testing efficiency of 91.18% with only 20 PCA reduced features whereas, the Support Vector Machine (SVM) produces a mean testing efficiency of 90.57% using 45 PCA reduced features. Also, the results show that the SRAN classifier avoids over-training by minimizing the number of samples used for training and provides a better generalization performance compared to the SVM classifier. The study clearly indicates that our proposed approach of PCA-SRAN classifier performs accurate classification of AD subjects using reduced morphometric features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应资源分配网络分类器的阿尔茨海默病检测
本文提出了一种基于体素形态学(VBM)和自适应资源分配网络(SRAN)分类器检测特征的新方法,用于从磁共振成像(MRI)扫描中检测阿尔茨海默病(AD)。对于特征约简,对从VBM分析中获得的形态特征进行主成分分析(PCA),然后将这些约简特征用作SRAN分类器的输入。在我们的研究中,使用了来自著名的开放获取影像研究系列(OASIS)数据集的30名“轻度至中度AD”患者和30名正常人的MRI体积。结果表明,SRAN分类器仅使用20个主成分约简特征,平均测试效率为91.18%,而支持向量机(SVM)使用45个主成分约简特征,平均测试效率为90.57%。此外,结果表明,SRAN分类器通过最小化用于训练的样本数量来避免过度训练,并且与SVM分类器相比提供了更好的泛化性能。该研究清楚地表明,我们提出的PCA-SRAN分类器方法使用简化的形态特征对AD受试者进行准确分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaos of protein folding EEG-based brain dynamics of driving distraction Residential energy system control and management using adaptive dynamic programming How the core theory of CLARION captures human decision-making Wiener systems for reconstruction of missing seismic traces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1