Ellipsometric study of thin carbon films deposited by pulsed laser deposition

A. Dikovska, L. Tzonev, I. Avramova, P. Terziiska, I. Bineva, G. Avdeev, E. Valcheva, J. Mladenoff, O. Angelov, S. Kolev, T. Milenov
{"title":"Ellipsometric study of thin carbon films deposited by pulsed laser deposition","authors":"A. Dikovska, L. Tzonev, I. Avramova, P. Terziiska, I. Bineva, G. Avdeev, E. Valcheva, J. Mladenoff, O. Angelov, S. Kolev, T. Milenov","doi":"10.1117/12.2516970","DOIUrl":null,"url":null,"abstract":"The fabrication of nano-crystalline carbon films was implemented by the application of pulsed laser deposition (PLD) technology. The experiments were performed in a standard on-axis laser ablation (LA) configuration. The third harmonic of a Nd:YAG laser was used for ablation of a microcrystalline graphite target. All experiments were performed in vacuum at a pressure of 1×10-3 Pa for different deposition times. (001) Oriented silicon (Si) covered by either 350 or 450 nm silica (SiO2) layer was used as a substrate. The films have a thickness between 4 and 40 nm and are characterized by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, atomic force microscopy (AFM) and ellipsometry measurements. We established deposition of nano-sized graphene-like films on top of predominantly amorphous carbon films with a thickness of 1- 2 nm. The measured the (n and k) and determined the values for the forbidden gap of the films which are between 0.01 eV and about 1 eV with reference to the sp3 hybridized carbon content of the film.","PeriodicalId":355156,"journal":{"name":"International School on Quantum Electronics: Laser Physics and Applications","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International School on Quantum Electronics: Laser Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2516970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The fabrication of nano-crystalline carbon films was implemented by the application of pulsed laser deposition (PLD) technology. The experiments were performed in a standard on-axis laser ablation (LA) configuration. The third harmonic of a Nd:YAG laser was used for ablation of a microcrystalline graphite target. All experiments were performed in vacuum at a pressure of 1×10-3 Pa for different deposition times. (001) Oriented silicon (Si) covered by either 350 or 450 nm silica (SiO2) layer was used as a substrate. The films have a thickness between 4 and 40 nm and are characterized by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, atomic force microscopy (AFM) and ellipsometry measurements. We established deposition of nano-sized graphene-like films on top of predominantly amorphous carbon films with a thickness of 1- 2 nm. The measured the (n and k) and determined the values for the forbidden gap of the films which are between 0.01 eV and about 1 eV with reference to the sp3 hybridized carbon content of the film.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脉冲激光沉积碳薄膜的椭偏研究
采用脉冲激光沉积(PLD)技术制备了纳米晶碳薄膜。实验是在标准的轴上激光烧蚀(LA)配置下进行的。利用Nd:YAG激光的三次谐波对微晶石墨靶进行烧蚀。所有实验均在真空中进行,压力为1×10-3 Pa,沉积时间不同。(001)取向硅(Si)覆盖350或450 nm的二氧化硅(SiO2)层作为衬底。薄膜的厚度在4 ~ 40 nm之间,并通过x射线光电子能谱(XPS)、拉曼光谱(Raman)、原子力显微镜(AFM)和椭偏仪测量对其进行了表征。我们在厚度为1- 2nm的非晶碳膜上建立了纳米级石墨烯类薄膜的沉积。根据薄膜中sp3杂化碳的含量,测定了薄膜的禁隙(n和k),并确定了禁隙在0.01 eV ~ 1 eV之间的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards bridging non-ionizing, ultra intense, laser radiation and ionizing radiation in cancer therapy Properties of polymeric materials for optical systems Multispectral autoflourescence detection of skin neoplasia using steady-state techniques Flexible and stretchable optoelectronic devices using graphene Depolarization of femtosecond pulses in air by nonlinear mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1