A kernel-ensemble bagging support vector machine

Ren Ye, P. N. Suganthan
{"title":"A kernel-ensemble bagging support vector machine","authors":"Ren Ye, P. N. Suganthan","doi":"10.1109/ISDA.2012.6416648","DOIUrl":null,"url":null,"abstract":"This paper proposes a kernel-ensemble bagging SVM classifier for binary class classification. The classifier is advantageous over bagging SVM classifiers because it has a two-phase grid search module, a proposed parameter randomization module and a proposed ranking module. The novel modules enhance the diversity thus improve the performance of the proposed SVM classifier. Six UCI datasets are used to evaluate the proposed kernel-ensemble bagging SVM. The result show that the proposed SVM classifier outperforms the single kernel bagging SVM classifiers.","PeriodicalId":370150,"journal":{"name":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2012.6416648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper proposes a kernel-ensemble bagging SVM classifier for binary class classification. The classifier is advantageous over bagging SVM classifiers because it has a two-phase grid search module, a proposed parameter randomization module and a proposed ranking module. The novel modules enhance the diversity thus improve the performance of the proposed SVM classifier. Six UCI datasets are used to evaluate the proposed kernel-ensemble bagging SVM. The result show that the proposed SVM classifier outperforms the single kernel bagging SVM classifiers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核集合装袋支持向量机
提出了一种用于二分类的核集成bagging支持向量机分类器。该分类器具有两阶段网格搜索模块、建议参数随机化模块和建议排序模块,优于bagging SVM分类器。新模块增强了分类器的多样性,从而提高了SVM分类器的性能。使用6个UCI数据集来评估所提出的核集合装袋支持向量机。结果表明,所提出的SVM分类器优于单核装袋SVM分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of risk score for heart disease using associative classification and hybrid feature subset selection WSDL-TC: Collaborative customization of web services Knowledge representation and reasoning based on generalised fuzzy Petri nets Interval-valued fuzzy graph representation of concept lattice Community optimization: Function optimization by a simulated web community
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1