Novelty detection based on extensions of GMMs for industrial gas turbines

Yu Zhang, C. Bingham, M. Gallimore, Darren Cox
{"title":"Novelty detection based on extensions of GMMs for industrial gas turbines","authors":"Yu Zhang, C. Bingham, M. Gallimore, Darren Cox","doi":"10.1109/CIVEMSA.2015.7158591","DOIUrl":null,"url":null,"abstract":"The paper applies the application of Gaussian mixture models (GMMs) for operational pattern discrimination and novelty/fault detection for an industrial gas turbine (IGT). Variational Bayesian GMM (VBGMM) is used to automatically cluster operational data into steady-state and transient responses, where extraction of steady-state data is an important preprocessing scenario for fault detection. Important features are extracted from steady-state data, which are then fingerprinted to show any anomalies of patterns which may be due to machine faults. Field data measurements from vibration sensors are used to show that the extensions of GMMs provide a useful tool for machine condition monitoring, fault detection and diagnostics in the field. Through the use of experimental trials on IGTs, it is shown that GMM is particularly useful for the detection of emerging faults especially where there is a lack of knowledge of machine fault patterns.","PeriodicalId":348918,"journal":{"name":"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA.2015.7158591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The paper applies the application of Gaussian mixture models (GMMs) for operational pattern discrimination and novelty/fault detection for an industrial gas turbine (IGT). Variational Bayesian GMM (VBGMM) is used to automatically cluster operational data into steady-state and transient responses, where extraction of steady-state data is an important preprocessing scenario for fault detection. Important features are extracted from steady-state data, which are then fingerprinted to show any anomalies of patterns which may be due to machine faults. Field data measurements from vibration sensors are used to show that the extensions of GMMs provide a useful tool for machine condition monitoring, fault detection and diagnostics in the field. Through the use of experimental trials on IGTs, it is shown that GMM is particularly useful for the detection of emerging faults especially where there is a lack of knowledge of machine fault patterns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于GMMs扩展的工业燃气轮机新颖性检测
本文将高斯混合模型(GMMs)应用于工业燃气轮机(IGT)的运行模式判别和新颖性/故障检测。变分贝叶斯GMM (VBGMM)用于将运行数据自动聚类为稳态和暂态响应,其中稳态数据的提取是故障检测的重要预处理场景。从稳态数据中提取重要特征,然后对其进行指纹识别,以显示可能由机器故障引起的模式异常。振动传感器的现场测量数据表明,GMMs的扩展为现场机器状态监测、故障检测和诊断提供了有用的工具。通过使用igt的实验试验,表明GMM对于检测新出现的故障特别有用,特别是在缺乏机器故障模式知识的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Novel method for failure prognostics of power MOSFET PLS initialized sequential estimator for target localization using AOA measurements Over provisioning rate in three-dimensional wireless sensor networks for partial sensing coverage Sizing compressed-air energy storage tanks for solar home systems Towards visual smart metering exploiting wM-Bus and DLMS/COSEM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1