Timely detection of Seismic waves in Ground motion data using Improved S-Transform

Ashish Sharma, S. Nanda
{"title":"Timely detection of Seismic waves in Ground motion data using Improved S-Transform","authors":"Ashish Sharma, S. Nanda","doi":"10.1109/ICRAIE51050.2020.9358363","DOIUrl":null,"url":null,"abstract":"In Seismology, exact recognition of arrival times of seismic wave has been a key challenge for a geologist. The arrival time of body waves provides significant information about the hypocenter location, source systems and tomography analysis. In this paper, Linear Gaussian kernel window method is incorporated with S-transform for time frequency decomposition of seismic signals. It progressively controls the window width to increase the concentration of energy and reduce the smearing effect in time-frequency region and minimize the spreading of wave. The IST is applied for time identification body wave components called Primary and Secondary waves. The accelerograph of famous earthquakes of San Francisco in 2014 and California in 2012 regions have been used for the analysis. The superiority of the results obtained from IST is compared with benchmark techniques continuous Wavelet Transform (CWT), Discrete Wavelet Transform (DWT) and S-Transform (ST) in terms of time detection.","PeriodicalId":149717,"journal":{"name":"2020 5th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAIE51050.2020.9358363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In Seismology, exact recognition of arrival times of seismic wave has been a key challenge for a geologist. The arrival time of body waves provides significant information about the hypocenter location, source systems and tomography analysis. In this paper, Linear Gaussian kernel window method is incorporated with S-transform for time frequency decomposition of seismic signals. It progressively controls the window width to increase the concentration of energy and reduce the smearing effect in time-frequency region and minimize the spreading of wave. The IST is applied for time identification body wave components called Primary and Secondary waves. The accelerograph of famous earthquakes of San Francisco in 2014 and California in 2012 regions have been used for the analysis. The superiority of the results obtained from IST is compared with benchmark techniques continuous Wavelet Transform (CWT), Discrete Wavelet Transform (DWT) and S-Transform (ST) in terms of time detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进s变换的地震动数据中地震波的及时检测
在地震学中,准确识别地震波的到达时间一直是地质学家面临的关键挑战。体波的到达时间为震源位置、震源系统和断层扫描分析提供了重要信息。本文将线性高斯核窗法与s变换相结合,对地震信号进行时频分解。逐步控制窗宽,增加能量的集中,减少时频区域的涂抹效应,使波的传播最小化。IST用于时间识别体波分量,称为一次波和二次波。使用了2014年旧金山和2012年加利福尼亚地区的著名地震加速度计进行分析。对比了连续小波变换(CWT)、离散小波变换(DWT)和s变换(ST)等基准技术在时间检测方面的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
COVID19: Impact on Indian Power Sector Smart Logic Built in Self-Test in SOC 2020 5th IEEE International Conference (Virtual Mode) on Recent Advances and Innovations in Engineering (IEEE - ICRAIE-2020) Hybrid Ant Colony Optimization Algorithm for Multiple Knapsack Problem Outage Probability Evaluation for Relay-Based DF Cooperative Diversity Systems with Multipath Fading Channels and Non-Identical Interferers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1