{"title":"Current Status of Magnetic Separation Using Superconducting Technology and Future Social Needs","authors":"Tsuneo Watanabe, S. Fukui","doi":"10.2221/jcsj.55.149","DOIUrl":null,"url":null,"abstract":"Synopsis : This article reviews the current status and recent progress of magnetic separation technologies using superconducting magnets and conventional magnets. In this article, firstly, the research and development history of magnetic separation technologies is reviewed. Secondly, the main component technologies for magnetic separation, such as options for magnetic separation methods, magnet devices as magnetic-field generators, magnetic seeding methods, magnetic filters and magnetic separation methods utilizing the Magneto-Archimedes effect, are summarized. Thirdly, the contents of presentations at the CSJ and CSSJ conferences held from 2006-2018 are summarized. Based on this summary, the status quo of the research and development of magnetic separation technologies in Japan is analyzed. It is confirmed that the component technologies for magnetic separation have advanced well and many new applications of magnetic separation using superconducting magnets have been developing. It is worth noting that the magnetic separation method removing radioactive Cs from contaminated soil using a superconducting magnet has been developed. In China and Korea, the research and development of magnetic separation technologies have continued as well. Particularly in China, there is much interest in magnetic separation since the environmental pollution that has become apparent with economic development has become serious. Through the technical review in this article, it is found that recent magnetic separation technologies have advanced to the level where social implementation is possible. Sustainable Development Goals (SDGs) and promotion of sustainable economies are the tailwinds for spreading magnetic separation with superconducting technology because of contributions to the environment, materials recycling, CO 2 reduction, cost reduction and innovation.","PeriodicalId":143949,"journal":{"name":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2221/jcsj.55.149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Synopsis : This article reviews the current status and recent progress of magnetic separation technologies using superconducting magnets and conventional magnets. In this article, firstly, the research and development history of magnetic separation technologies is reviewed. Secondly, the main component technologies for magnetic separation, such as options for magnetic separation methods, magnet devices as magnetic-field generators, magnetic seeding methods, magnetic filters and magnetic separation methods utilizing the Magneto-Archimedes effect, are summarized. Thirdly, the contents of presentations at the CSJ and CSSJ conferences held from 2006-2018 are summarized. Based on this summary, the status quo of the research and development of magnetic separation technologies in Japan is analyzed. It is confirmed that the component technologies for magnetic separation have advanced well and many new applications of magnetic separation using superconducting magnets have been developing. It is worth noting that the magnetic separation method removing radioactive Cs from contaminated soil using a superconducting magnet has been developed. In China and Korea, the research and development of magnetic separation technologies have continued as well. Particularly in China, there is much interest in magnetic separation since the environmental pollution that has become apparent with economic development has become serious. Through the technical review in this article, it is found that recent magnetic separation technologies have advanced to the level where social implementation is possible. Sustainable Development Goals (SDGs) and promotion of sustainable economies are the tailwinds for spreading magnetic separation with superconducting technology because of contributions to the environment, materials recycling, CO 2 reduction, cost reduction and innovation.